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The United States energy information administration states that more that 50% of 

commuters drive their own cars to work. This implies that traffic congestion can be mitigated 

if public transit service can take a larger share of commuting trips. However, a commuter’s 

choice depends on the utility associated with each available mode. Transit service must be 

improved to increase its utility and therefore attract more riders. 

To improve customer satisfaction and reduce operation costs, transit authorities have 

been striving to monitor their transit service quality and identify the key factors to attract the 

transit riders. Traditional manual data collection methods are unable to satisfy the transit 

system optimization and performance measurement requirement due to their expensive and 

labor-intensive nature. The recent advent of passive data collection techniques (e.g. 

Automated Fare Collection and Automated Vehicle Location) has shifted a data-poor 

environment to a data-rich environment, and offered opportunities for transit agencies to 

conduct comprehensive transit system performance measures. Although it is possible to 
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collect highly valuable information from ubiquitous transit data, data usability and 

accessibility are still difficult to improve due to the following reasons: (1) most Automatic 

Fare Collection (AFC) systems are not designed for transit performance monitoring, hence 

additional passenger trip information cannot be directly retrieved. (2)  Each passive data 

collection method has its intractable disadvantages, and requires additional domain 

knowledge to process. Interoperating and mining heterogeneous datasets would enhance both 

the depth and breadth of transit-related studies. (3) The amount of data involved is 

increasingly growing, and traditional data processing applications might not be suitable to 

handle in an efficient fashion. Such data barriers hinder the development of a large-scale 

transit performance monitoring system. 

This study attempts to fill these research gaps by developing a series of data mining 

algorithms for transit rider’s origin and destination information extraction with transit Smart 

Card (SC) data. The primary data source of this study comes from the AFC system in Beijing, 

where a passenger’s boarding stop (origin) and alighting stop (destination) on a flat-rate bus 

are not recorded on the check-in and check-out scan. A Markov chain based Bayesian 

decision tree algorithm is proposed to mine the passengers’ origin information using SC data. 

In addition, this study further proposes an integrated data mining procedure that models the 

travel patterns and regularities of transit riders. This procedure is able to incorporate transit 

riders’ trip chains based on their temporal and spatial characteristics, and capture their 

historical travel patterns in an efficient manner. Then, on the basis of the identified travel 

patterns, the individual-level destination can be estimated with transfer analysis through a 

multi-day observation. Finally, to remove data accessibility barriers, facilitate data sharing 
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and visualization, and conduct online data analysis for transit performance measures, an e-

science of transportation platform entitled TransitNet is developed. TransitNet enables the 

connections and interoperability among the heterogeneous transit data sets including SC data, 

GPS data and Geographic Information System (GIS) data. This platform not only serves as a 

data-rich visualization platform to monitor transit network performance for planning and 

operations, it also intends to take advantage of e-science developments for data-driven 

transportation research and applications. 
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Chapter 1 Introduction 

1.1 Problem Statement 

Approximately 76% of those living in the United States chose privately owned 

vehicles for their commute to work in 2000 (ICF Consulting, 2003) and data collected for 

the 2009 American Community Survey indicate that 79.5% drive alone when commuting 

(McKenzie and Rapino, 2011). This pattern is now becoming apparent in developing 

countries such as China, where many rely on privately owned vehicles to commute. In 2010, 

for example, more than 34% of Beijing residents chose cars as their primary travel mode 

while only 28.2% chose transit (Beijing Transportation Research Center, 2011). 

Public transit has been considered as an effective countermeasure to reduce 

congestion, air pollution, and energy consumption (Federal Highway Administration, 2002).  

According to the 2005 urban mobility report conducted by the Texas Transportation 

Institute (2005), travel delay in 2003 would have increased by 27 percent without public 

transit, and in  the most congested metropolitan cites of U.S., public transit services have 

saved more than 1.1 billion hours of travel time. Moreover, public transit can help enhance 

business, and reduce city sprawl through transit oriented development (TDO). During 

certain emergency scenarios, public transit can even act as a safe and efficient 

transportation mode for evacuation (Federal Highway Administration, 2002). Based on the 

aforementioned reasons, it is of critical importance to improve the efficiency of public 
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transit system, and promote more roadway users to utilize public transit. To fulfill these 

objectives, transit agencies need to understand the areas where further improvements can be 

made, and whether community goals are being met, etc. A well-developed performance 

measure system will help facilitate decision making for transit agencies. Transit agencies 

can evaluate the transit ridership trends with fare policy changes and identify where and 

when better transit service should be provided. In addition, transit agencies are also 

required to summarize transit performance statistics for reporting to either the National 

Transit Database (Kittelson & Associates et al., 2003), or the general public who are 

interested knowing how well transit service is being provided. Nevertheless, developing a 

set of structured performance measures often requires a large amount of data and the 

corresponding domain knowledge to process and analyze the data. These obstacles create 

challenges for transit agencies that must spend time and effort undertaking.  

Traditionally, transit agencies heavily rely on manual data collection methods to 

gather transit operation and planning data (Ma et al., 2012). However, traditional data 

collection methods (e.g. travel diary, survey, etc.) are fairly costly and difficult to 

implement at a multiday level due to their low response rate and accuracy. Transit agencies 

have spent tremendous manpower and resource undertaking manual data collections, and 

consumed a significant amount of energy and time to post-process the raw data. With 

advances in information technologies in intelligent transportation systems (ITS), the 

availability of public transit data has been increasing in the past decades, which has 

gradually shifted the public transit system into a data-rich environment.  
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The Automatic Fare Collection (AFC) system and the Automatic Vehicle Track 

(AVL) system are two common passive data collection methods. To complete financial 

transactions, the AFC system, also known as the Smart Card system, records and processes 

the fare related information using either a contactless or a contact card (Chu, 2010). There 

exist two typical types of AFC systems: entry-only AFC system and distance-based AFC 

system. In the entry-only AFC system, passengers are only required to swipe their smart 

cards over the card reader during boarding. For the distance-based AFC system, passengers 

need to check in and check out during both their boarding and alighting procedures  

AVL and AFC technologies hold substantial promise for transit performance 

analysis and management at a relative low cost. However, historically, both AVL and AFC 

data have not been used to their full potentials. Many AVL and AFC systems do not archive 

data in a readily utilized manner (Furth, 2006). AFC system is initially designed to reduce 

workloads of tedious manual fare collections, not for transit operation and planning 

purposes, and thereby, certain critical information, such as specific spatial location for each 

transaction, may not be directly captured.  AVL system tracks transit vehicles’ geospatial 

locations by Global Positioning System (GPS) at either a constant or varying time interval. 

The accuracy of GPS occasionally suffers from signal loss due to tall building obstructions 

in the urban area (Ma et al, 2011). Both AFC and AVL systems have their inherent 

drawbacks in monitoring transit system performance, and require analytical approaches to 

eliminate erroneous data, remedy missing values, and mine unseen and indirect information.  
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Conveying these processed AVL and AFC data in an understandable and flexible 

manner will be particularly desirable for transit agencies. In the past years, several home-

grown software tools have been developed to facilitate transit agencies to generate key 

transit performance indicators; however, these tools lack the flexibility to adapt to their 

particular needs. Because of different data formats and software environments, stand-alone 

and expensive commercial software tools may be inaccessible to most agencies’ staff 

analysts. In addition, the amount of transit data involved is intensively increasing and is 

challenging to manage using traditional data processing applications. On the other hand, 

developing one’s own transit data processing and analytical tools are beyond most transit 

agencies’ capabilities, and requires additional resources to handle. Few efforts have been 

made to propose an explicit architecture and framework for interactive online transit 

performance analysis with consideration of such heterogeneous data. Such a framework 

will greatly improve transit data usability and accessibility for transit agencies. 

1.2 Research Background  

1.1.1 Potential Use of Passive Data in Public Transit 

Transit passenger Origin-Destination (OD) data are crucial for transit system 

planning and route optimization (Li, 2009). A transit rider OD pair can be potentially 

extracted from the SC transaction database. However, this is not a straightforward task. Two 

major challenges must be addressed to obtain good quality OD data. The challenges 

originate from the design of the SC scan system for the flat-rate buses. Since passengers 
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pay a fixed rate to the flat-rate buses, only check-in scan is considered necessary in the SC 

scan system design (Zhao, et al., 2007). Compared to the distance-based fare bus riders, 

flat-rate bus users do not have check-out records. This creates the first challenge in OD 

extraction: where does a passenger get off a flat-rate bus? Furthermore, the scan system 

does not save the location and direction information of the check-in scans and this creates 

the second challenge: where does a passenger get on a flat-rate bus? 

The two challenges induce two very interesting research topics: (1) how to identify 

the transit stop ID for a check-in scan, and (2) at which transit stop does the passenger get 

off the flat-rate bus? Given the fixed route of transit vehicles, known distance between stops, 

and transaction records stored in the database, such as  smart card ID, route number, driver 

ID, transaction time, remaining balance, transaction amount, etc., it is not impossible to 

estimate a flat-rate bus user’s check-in and check-out stops through data mining and data 

fusion techniques. However, the accuracy of the extracted OD data depends largely on the 

quality of the data processing algorithms (Zhang, 2002).   

To improve transit services and encourage more people to use public transit, transit 

agencies have been striving to identify the key factors that attract transit riders through 

studying their travel patterns. With a better understanding of the travel patterns of transit 

riders, transit authorities will be able to evaluate their current services to reveal how best to 

adjust their marketing strategies to encourage higher usage (Boyle et al., 2000). For 

example, knowing why some riders are especially loyal to transit can help transit agencies 

to determine where and when they should provide discounts to retain these loyal transit 
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riders and potentially attract new riders (Trépanier et al., 2012). Based on identified travel 

patterns and transit usage regularities, transit authorities are able to evaluate the most cost-

effective fare packages for transit riders, understand how transit riders’ behaviors are likely 

to change in response to a new fare structure, and thus select a fare policy that achieves the 

optimum balance between enhancing the attractiveness of the transit system and 

maximizing fare revenue (Taylor and Jones, 2012). 

In addition, transit planners and researches can also utilize individual travel-

behavior data for activity-based trip modeling and transit travel demand analyses. For 

public agencies, information on the travel patterns for individual transit riders can also be 

utilized to quantify the effectiveness of transit-oriented development (TOD) (Dill, 2008). In 

particular, personal travel behavior data can reveal how TOD residents change their daily 

commuting behaviors and how transit use varies spatially and temporally. However, 

acquiring individual transit travel pattern is challenging (Tirachini, 2012). Traditional 

transit travel pattern analysis largely relies on rider satisfaction surveys or travel diaries 

(Chu and Chapleau, 2010), which is very costly and difficult to implement at a multiday 

level due to the low response rate and accuracy. The use of, smart card data to track 

passengers’ long term travel activities and patterns, such as the number of typical daily trip 

chains, common boarding/alighting stops and trip start/end times, offers a far more 

convenient and efficient data source. Smart card data records both temporal and spatial 

information for each rider, making it feasible to conduct individual travel pattern analysis 

through longitudinal analyses (Chu, 2010). 
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Monitoring the performance of public transit system is a stepping stone toward the 

successful and proactive transit management (Bertini and El-Geneidy, 2003). In past 

decades, comprehensively evaluating the transit system has been considered difficult due to 

limited data sets from conventional collection techniques, such as surveys, questionnaires 

or interviews. Thanks to the repaid deployment of ITS sensors, collecting a wealth of good 

quality transit data at a relatively low cost is becoming more and more viable. Using these 

widely available data, transit agencies is able to evaluate their current transit service, better 

understand the ridership, and ultimately increase the attractiveness of public transit. For 

instance, transit agencies can examine the stop-level ridership, check the headway deviation, 

and consequently optimize transit routes to improve service reliability (Feng et al, 2011). 

Through  visualization and GIS technologies, an interactive web-based transit information 

system would be of particular interest to transit rides to schedule their trip itinerary for time 

savings, and also reduces their waiting time by providing the real-time transit arrival 

information (Ferris, 2011; Sun et al, 2011).  For transportation researchers, such a data-rich 

visualization platform will revolutionize the traditional transportation study from the 

mathematic-equation driven scope to the data-driven perspective (Peng and Huang, 2000). 

For instance, large-scale transit route optimization problems could be solved in an efficient 

and effective fashion by analyzing the network-level transit travel time data. Similarly, 

stops with the heavy ridership could be intuitively identified by observing the stop-level 

number of boarding passengers. Transportation researchers can also consolidate the 

development of transit assignment models by observing individual-level transit rider’s 

behavior (Hamdoucha et al, 2011). Establishing such an online transit performance 

measures system is beneficial for transportation practitioners, transportation researchers and 



www.manaraa.com

8 

 

transit riders.  

1.1.2 Data Sources 

Data from AFC system and AVL system are the two primary sources in this study.  

Beijing Transit Incorporated began to issue smart cards in May 10, 2006. The smart card 

can be used in both the Beijing bus and subway systems. Due to discounted fares (up to 

60% off) provided by the smart card, more than 90% of the transit riders paid for their 

transit trips with their smart cards in 2010 (Beijing Transportation Research Center, 2010). 

Two types of AFC systems exist in Beijing transit: flat fare and distance-based fare. Transit 

riders pay at a fixed rate for those flat fare buses when entering by tapping their smart cards 

on the card reader. Thus, only check-in scans are necessary. For the distance-based AFC 

system, transit riders need to swipe their smart cards during both check-in and check-out 

processes. Transit riders need to hold their smart cards near the card reader device to 

complete transactions when entering or exiting buses. Smart cards can be used in the 

Beijing subway system as well, where passengers need to tap their smart card on top of fare 

gates during entering and existing subway stations. Both boarding and alighting information 

(time and location) are recorded by the fare gates. Although transit smart card exhibits its 

superiority in its convenience and efficiency, there are still the following issues to prevent 

transit agencies from fully taking advantage of smart cards for operational purposes: 

• Passenger boarding and alighting information missing 
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Due to a design deficiency in the smart card scan system, the AFC system on flat 

fare buses does not save any boarding location information, whereas for distance-based 

fares, the AFC system stores boarding and alighting locations, but stores no  boarding time 

information. Key information stored in the database therefore includes smart card ID, route 

number, driver ID, transaction time, remaining balance, transaction amount, boarding stop 

(for distance-based fare buses only), and alighting stop (for distance-based fare buses only). 

• Massive data sets 

More than 16 million smart card transactions data are generated per day. Among 

these transactions, 52% are from flat-rate bus riders. These smart card transactions are 

scattered in a large-scale transit network with 52386 links and 43432 nodes as presented in 

figure 1-1: 



www.manaraa.com

10 

 

 

Figure 1-1 Beijing Transit Network in GIS 

• Limited external data with poor quality 

Only approximate 50% of transit vehicles in Beijing are equipped with GPS devices 

for tracking. GPS data are periodically sent to the central server at a pre-determined interval 

of 30 seconds.  However, the collected GPS data suffer from two major data quality issues: 

(1) vehicle direction information is missing, and (2) GPS point fluctuation (Lou, et al., 

2009). Map matching algorithms are needed to align the inaccurate GPS spatial records 

onto the road network. In addition, most of transit routes are not designed to have fixed 
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schedules because of high ridership demands, and only certain routes with a long distance 

or headway follow schedules at each stop (Chen et al, 2009). These characteristics of the 

Beijing AFC and AVL systems create more challenges to process and mine useful 

information.  

It is noteworthy that the AFC system used in Beijing is not a unique case. Most 

cities in China also employ the similar AFC system where passengers’ origin information is 

absent, such as Chongqing (Gao and Wu, 2011), Nanning (Chen, 2009), Kunming (Zhou et 

al., 2007). Even in other developing countries, such as Brazil, the AFC system doesn’t 

record any boarding location information as well (Farzin, 2008). Therefore, a solution for 

passenger boarding and alighting information extraction is beneficial to those transit 

agencies with imperfect SC data internationally. 

1.3 Research Objectives  

The ultimate objective of this study is to establish an e-Science platform to 

modeling, analyzing, and visualizing public transit passive data, and provides a solid, 

expandable foundation for road users, researchers, and decision makers. The key objectives 

of this study include: 

• Develop a statistical model to infer passenger origin information using smart card 

data in an efficient and effective fashion;  
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• Develop a comprehensive data-mining procedure to extract each transit rider’s travel 

pattern and regularity information from large smart card datasets with incomplete 

information; 

• Develop an individual-level passenger destination estimation algorithm considering 

transit riders’ travel behaviors; 

• Develop a computational engine to mine passenger origin and destination based on 

smart card data; 

• Identify several  performance measures to evaluate public transit system  

• Develop an e-Science-based transit spatial information platform for visualization 

and analysis 

1.4 Study Scope 

Automatic fare collection (AFC) systems contain rich spatial and temporal 

information obtained from through contactless smart cards with unique IDs, which 

significantly reduce the manpower required to collect transit passenger OD data. However, 

most AFC systems are not designed for OD data collection. Especially for AFC systems in 

the majority of developing countries, passengers’ boarding information is missing. Hence 

further data processing and analysis are necessary for passenger information extraction. 

This paper presents a Bayesian decision tree based statistical approach to infer the 

passenger origin from the imperfect SC transaction data, which is the first step for the 

transit OD estimation technique. In addition, smart card data collected by the AFC system 

would lack certain trip related information that affects data processing performance. To deal 
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with this data issue, this paper proposes a robust and comprehensive data-mining procedure 

to extract individual transit rider’s travel pattern and regularity using a large dataset with 

incomplete information. Then, a transit rider’s behavioral information (i.e. travel patter and 

regularity) is incorporated into individual level passenger destination estimation, and the 

algorithm accuracy is improved. Finally, with the inferred individual level passenger OD 

data and processed trip information, a series of comprehensive performance indicators can 

be further developed to quantify the quality of public transit system. To visualize these 

performance measures in an understandable fashion for both transit agencies and 

transportation researchers, an e-science geospatial platform called TransitNet is developed 

to facilitate both transit system operational optimization and planning. The overall 

methodological framework is outlined in Figure 1-2. 

 

Figure 1-2 Methodological Framework 
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1.5 Expected Benefits 

In a short term run, the study provides insights on transit passive data retrieval, 

processing, storing and visualization. In particular, this study proposes a novel statistical 

approach to mine the individual-level passenger origin using incomplete and imperfect 

smart card datasets. Moreover, travel behavioral information of each transit rider can be 

inferred in an efficient and effective fashion. The understanding of travel behaviors allows 

transportation researchers to strengthen transit planning procedures, including activity-

based trip modeling and dynamic transit assignment analysis. For the transit agencies, they 

can utilize the transit riders’ travel patterns to identify the transit travel demand, adjust their 

marking strategies, and further improve the transit system service. On the basis of the 

mined individual-level travel pattern and travel regularity, a more robust passenger 

alighting stop algorithm is developed. By linking each passenger’s origin and destination, 

transit agencies and transportation researchers can better conduct trip-related analyses,  

including: transfer activity detection, trip purpose identification, and stop-level or route-

level travel demand forecasting, etc.  Combined with other types of data (e.g. GPS data and 

GIS data), a visualization platform can be established to monitor and evaluate the transit 

system performance, assist transit agencies to optimize the transit network and ultimately 

increase the attractiveness of public transit. This will benefit reducing congestions and 

alleviating traffic-related pollution.  

In the long run, this study lays a solid foundation to support future endeavors in the 

e-science area of transportation. The amount of data generated from people’s daily lives has 
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been growing rapidly. This is especially true in the transportation domain. With advances in 

data-collection technologies and their deployment in intelligent transportation systems 

(ITS), the availability and accessibility of transportation data have increased tremendously 

in the past decades. The size of data is so large that traditional data management tools 

cannot process it within a tolerable time frame. These large quantities of data are called 

“Big Data” (Zikopoulos, et al., 2011). “Big Data” initiative brings up both challenges and 

opportunities, and revolutionizes a variety of domains ranging from astronomy to 

bioengineering; however, the transportation community has shown a slow progress to 

accept this concept. Big data requires novel approaches to process the huge amount of data 

efficiently. Data mining and visualization techniques are two of the suggested suitable tools 

by McKinsey (Manyika et al., 2011). This study attempts to utilize these two weapons to 

bridge the research gap between public transit and the big data concept.  

1.6  Dissertation Organization  

The remainder of this dissertation is organized as follows. Chapter 2 reviews several 

previous research efforts on transit smart card data applications, including passenger origin 

and destination inference approaches, individual-level passenger behavior analysis and 

mining, and existing transit performance measures programs. In addition, this chapter 

envisions the future of data-driven intelligent transportation system with a specific 

emphasis towards how “big data” can revolutionize the conventional mathematical-

equation driven transportation studies.   
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Chapter 3 focuses on passenger origin information estimation using both GPS and 

smart card data. A data fusion method to integrate roadway geospatial data, transit vehicle 

GPS records and smart card transactions is firstly proposed to infer each passenger’s 

boarding location. Moreover, a Bayesian decision tree algorithm is presented to estimate 

each passenger’s boarding stop when GPS data are unavailable. Considering the expensive 

computational burden of decision tree algorithms, Markov-chain property is taken into 

account to reduce the algorithm complexity. Smart card transaction data and GPS data from 

the Beijing transit system are used to test and verify the proposed algorithms.  

On a basis of the inferred individual passenger origin information, Chapter 4 further 

extracts each passenger’s travel behavior information through multi-day observations. A 

robust and comprehensive data mining procedure is proposed to generate each individual’s 

spatial/temporal travel pattern and travel regularity. The proposed data mining procedure is 

further optimized using the rough set theory to extract association rules from massive smart 

card transactions. The rough-set-based algorithm is compared with other prevailing 

classification algorithms. The results indicate that the proposed algorithm outperforms other 

prevailing data-mining algorithms in terms of accuracy and efficiency.  

In Chapter 5, individual-level passenger alighting location can be estimated by the 

following three criteria: (1) Consider each passenger’s transfer activity (2) Consider each 

passenger’s daily trip characteristics (3) Integrate each passenger’s historical travel pattern 

and travel regularity. The inferred individual passenger destinations are compared with 

ground-truth data from distance-based buses, where each passenger’s boarding stop and 
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alighting stop are recorded. The results imply that the proposed passenger alighting location 

inference algorithm can achieve a fairly high accuracy.  

With individual passenger origins and destinations, transit performance measures 

are further developed in Chapter 6. Multiple-scale performance indicators are calculated 

based on both processed smart card data and GPS data. The key performance indices 

include network level travel speed, stop-level passenger ridership (i.e. number of boarding 

and alighting passengers), stop-level transit vehicle headway, and segment-level travel time 

reliability. To disseminate and convey these transit performance statistics in an efficient and 

effective fashion, an eScience platform for sharing, visualizing, modeling, and analyzing 

transit-related data are developed. This platform is named as TransitNet, and it not only 

serves as a data visualization and archival system, but also enables connections and 

interoperability among heterogeneous data sets including smart card data, GPS data and 

GIS data. This prototype gains significant insights from the conventional transportation 

research to more powerful data-driven solutions.   

Finally, Chapter 7 concludes the research effort in this dissertation and envisions 

further research directions.   
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Chapter 2 State of the Art 

2.1 Transit Origin and Destination  

Many OD matrix inference approaches have been investigated over the past years. 

Researches on Metropolitan Transit Authority (MTA)’s MetroCard system in New York 

City (Barry et al, 2002; Barry et al, 2009) revealed the feasibility of station-to-station OD 

matrix generation in the entry-only automatic fare collection subway system. Zhao et al. 

(2007) and Rahbee (2009) proposed a transit OD matrix estimation algorithm for origin-

only AFC data from Chicago Transit Authority rail system. However, their algorithms 

primarily focused on the rail system, where boarding at fixed stations are easier to locate 

than bus transit systems. Pelletier et al. (Pelletier et al., 2010) undertook a thorough 

literature review on transit smart card data usage, and they concluded that properly 

processing SC data can enhance the strategic, tactical, and operational performances for 

transit agencies Trépanier et al. (2007; 2009) conducted several studies on AFC system in 

the National Capital Region of Canada, and developed algorithms to extract travel 

information from SC transaction data for transit performance measures. They evaluated 

various transit statistics, and demonstrated the feasibility of developing of a transit 

performance measure system using SC data. Munizaga and Palma (2012) developed a 

disaggregate multimodal approach to infer passengers’ alighting stops using smart card data 

and GPS data in Santiago, Chile.     
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Most of the aforementioned studies are based on the entry-only AFC system, where 

boarding information is known in advance. In several existing AFC systems with missing 

boarding stops, researchers incorporated other data sources to jointly infer boarding 

locations, such as Automated Passenger Counter (APC) data, schedule data and GPS data. 

Farzin (2008) outlined a process to construct an automated transit OD matrix based on 

smart card and GPS data in Brazil. Nassir et al. (2011) integrated APC data, GPS data, 

transit schedule data with AFC data to estimate the stop-level passenger origin and 

destination. Zhang el al. (2007) matched each passenger’s boarding time for origin 

inference by recording bus arriving time using on-bus surveys, but their algorithms are 

difficult to expand due to massive manual data collection effects. Review of existing 

literature does not identify any approach suitable for passenger OD information extraction 

from Beijing’s SC transaction data. Hence, an OD estimation algorithm applicable for 

Beijing’s AFC system is highly desired.   

2.2 Travel Behaviors Analysis in Public Transit 

Traditional travel survey or diary study is very costly and difficult to understand the 

transit rider’s trip information and travel regularity. Transit passive data collection methods 

shed light on the individual-level transit behavior analysis on a multi-day basis. Recently, 

using smart card data to mine transit riders’ travel patterns has been gaining more and more 

popularities, and a wealth of relevant researches have been conducted.  

Pelletier et al. (2011) summarized previous smart card data studies, and showed that 
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modeling individual based trip behavior is a potentially challenging topic. Kitamura et al. 

(13) and Morency et al. (2006;2007) utilized multiple day smart card data to analyze transit 

riders’ travel variability, and concluded that understanding travel variability can reduce 

operational cost and manage demand. Several studies (2004;2005) concluded that transit 

agencies are able to extract the customer loyalty on a basis of multiday smart card data. 

Utsonomiya et al. (2006) used the smart card data from the Chicago Transit Authority (CTA) 

to extract passengers’ transit usage and access distance, and concluded the transit usage data 

can be used for transit planning and market research. Webb (2010) emphasized the 

importance of transit loyalty, and developed several measures (e.g. satisfaction, quality of 

service) to quantify transit loyalty; however, Webb’s findings are still based on traditional 

customer satisfaction survey. Lee and Hickman (2011) defined regular transit users as two 

or more trips during typical weekdays, and found travel patterns vary by card types. Lu and 

Reddy (2012) identified the irregularity of transit ridership by mining transit smart card 

data in New York City. Their findings will help transit agencies to optimize the weekday 

transit schedule for cost savings. Devillaine et al. (2012) took advantage of both smart card 

data and GPS data to extract transit riders’ behavioral information such as activity location 

and time, duration, trip purpose.   

Most of the aforementioned research based on smart card data extracted travel 

behavior information macroscopically rather than by analyzing individual transit riders’ 

travel patterns. Chu and Chapleau (2010) applied the association rule and clustering 

algorithms to measure transit riders’ regularity, and conducted an individual travel behavior 

analysis using both temporal and spatial methods. However, their analysis was based on 
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high quality data with complete information and their method was not optimized for a large 

dataset. In reality, most transit agencies have adopted a comprehensive procedure to store 

smart card data, providing strict authorization and security mechanisms to protect the 

personal information generated from smart card data (Dinant and Keuleers, 2004). Sensitive 

content such as passenger age, name, boarding and alighting locations are intentionally 

truncated to address privacy concerns (Verykios et al., 2004), so efficient data mining 

approaches are needed to infer passenger travel behavior information from these incomplete 

smart card datasets.    

2.3 Transit Performance Monitoring and Visualization 

According to the Transit Capacity and Quality of Service Manual (TCQSM) in 1999 

(Kittelson and Associates, 1999), six performance indicators are recommended to evaluate 

the public transit system:  service frequency, hours of service, service coverage, passenger 

loading, reliability, and transit vs. automobile travel time. Lem et al. (1994) took into 

account intermodal performance measures, and proposed the most common indicators as: 

operating cost per revenue vehicle hour, operating cost per passenger boarding, farebox 

revenue per operating cost, number of boarding passengers per revenue vehicle mile, and 

passenger revenue vehicle hour. However, the transit performance measures proposed by 

TCQSM and Lem et al. rely on the manually collected data either by surveys or onboard 

questionnaires on a single day, and there is no further information provided to monitor the 

transit system performance in a long term due to data limitation (Trépanier et al., 2009).  
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In the past decades, more and more transit agencies have begun to adopt AFC 

systems for fare collection, and thus the availability of transit smart card data improves 

significantly. Transit cooperative research program (TCRP) identified the AFC system is a 

potential data collection technique for large-scale transit performance measures (Kittelson 

& Associates et al. 2003). At the same time, TCRP also indicated that integrating both AFC 

and AVL data holds substantial promise for improving transit planning and operations 

(Furth et al., 2006). To better utilized AFC data and AVL data for transit performance, a 

variety of relevant studies have been conducted. Bertini and EI-Geneidy (2003) processed 

the archived transit data from bus dispatch system (BDS) in Tri-County Metropolitan 

Transportation District of Oregon (TriMet). This system includes AVL based GPS, 

automated passenger counters (APC) and traffic signal priority (TSP), radio communication 

and computer-aided dispatching technologies. The stop-level data generated by this BSD 

system are stored periodically, and requires significant efforts to process and generate 

meaningful statistics for performance monitoring. Bertini and EI-Geneidy then resorted to 

visualization tools to further analyze and present these tremendous data, and proposed 

several valuable indicators to quantify the transit service variability. Gallucci and Allen 

(2011) used the transit performance measures program of Chicago’s Regional 

Transportation Authority (RTA) as an example, and elaborated the challenges and 

summarized the lessons. They categorized the following five areas to create the transit 

performance indicators: service coverage, service efficiency and effectiveness, service 

delivery, service maintenance and capital investment, and service level solvency. Based on 

the experience of Chicago RTA, Gallucci and Allen further emphasized that quantifying 

both customer satisfaction and asset condition could be the possible direction for transit 
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performance measures.  

Without powerful visualization techniques, disseminating transit performance 

indicators generated from massive smart card data in an intelligible manner could be very 

difficult. GIS is often considered an effective tool to convey the spatial information, and a 

wealth of studies have been undertaken to incorporate passive transit data and GIS 

information to present transit performance measures or develop transit traveler information 

systems. For instance, Chapleau et al (2011) integrated AFC, APC, GPS and GIS data to 

establish a framework to evaluate transit performance in a GIS platform. Curries and 

Mesbah (2011) developed a GIS visualization platform to explore the spatial and temporal 

patterns of changes for transit performance in Melbourne, Australia. They utilized the 

ArcGIS software to demonstrate transit performance in a GIS environment. Liao and Liu 

(2010) developed a stand-alone visualization software interface to conduct the time point 

level travel time and schedule adherence analysis by using AVL, APC and AFC data in 

Minnesota. The processed information can be integrated into a mapping system to improve 

public transit service and optimize the transit route/schedule. The key performance 

components include: travel time analysis; reliability analysis for schedule adherence; travel 

time variation.  

The majority of previous transit performance monitoring systems largely relies on 

the file-based data processing, and resort to commercialized GIS software to present the 

transit-related information for operations and planning. Transit agencies have to spend 

considerable time and financial resources purchasing and maintaining the software (Sun et 
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al, 2011). In addition, because most of commercialize software are not designed on a basis 

of open architecture, transit agencies have to strictly provide the spatial data in accordance 

with the format of GIS files by the commercialized software. These obstacles incur 

inevitable inconveniences and lack flexibility for both users and developers. Moreover, file-

based data management systems has their inherent disadvantages on processing tremendous 

amounts of data collected from AVL, APC and AFC systems, and disseminating the transit-

related information in an efficient manner. To increase the interoperability and scalability, 

an open-architecture and open-source platform in consideration of geospatial database has 

been proposed and developed recently by Ma et al (2011). This new platform is named as 

Digital Roadway Interactive Visualization and Evaluation Network (DRIVE Net). DRIVE 

Net is not a simple system for data demonstration and archival, but also serves as a data-

rich visualization platform, and it intends to take advantage of e-science developments for 

data-driven transportation research and applications. It is expected to remove the data 

barriers for better accessibility and extensibility, and benefit regular road users, 

transportation practitioners and researchers. 
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Chapter 3 Transit Passenger Origin Inference 

Because smart card readers in the flat-rate buses do not record passengers’ boarding 

stops, it is desired to infer individual boarding location using smart card transaction data. In 

this Chapter, two primary approaches are presented to achieve this goal. Approximately 

50% transit vehicles are equipped with GPS devices in Beijing entry-only AFC system.  

Therefore, a data-fusion method with GPS data, smart card data and GIS data are firstly 

developed to estimate each bus’s arrival time at each stop and infer individual passenger’s 

boarding stops. And then, for those buses without GIS devices, a Bayesian decision tree 

algorithm is proposed to utilize smart card transaction time and apply Bayesian inference 

theory to depict the likelihood of each possible boarding stop. In order to expand the 

usability of proposed Bayesian decision tree algorithm in large-scale datasets, Markov 

chain optimization is used to reduce the algorithm’s computational complexity. Both two 

transit passenger origin inference algorithms are validated using external data (e.g. on-

board survey data and GPS data).  

3.1 Passenger Origin Inference with GPS Data  

In the first step, a GPS-based arrival information inference algorithm is presented to 

estimate the arrival time for each transit stop, and then, the inferred stop-level arrival time 

will be matched with the timestamp recorded in AFC system. The temporally closest smart 

card transaction record will be assigned with each known stop ID. The logic flow chart is 
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demonstrated in Figure 3-1. The major data processing procedure will be detailed below. 

 

Figure 3-1 Flow Chart for Passenger Origin Inference with GPS Data 

3.1.1 Bus Arrival Time Extraction 

Three primary data sources are involved in the passenger information extraction: 

vehicle GPS data; transit stop spatial location data; and flat-fare-based smart card 

transaction data. A transit GIS network contains the geospatial location of each stop for any 

transit routes. The GPS device mounted in the bus can record each bus’s location and 

timestamp every 30 seconds, but the data quality of collected GPS records is insufficient: 

No directional information is recorded in Beijing AVL system; GPS points are off the 

roadway network due to the satellite signal fluctuation. Data preprocessing is required prior 



www.manaraa.com

27 

 

to bus arrival time estimation. A program is written to parse and import raw GPS data into a 

database in an automatic manner.  Key fields of a GPS record are shown in Table 3-1.  

Table 3-1 Examples of GPS raw data 
 

Vehicle ID Date time Latitude  Longitude Spot speed Route ID 

00034603 2010-04-07 
09:28:57 39.73875 116.1355 9.07 00022 

00034603 2010-04-07 
09:29:27 39.73710 116.1358 14.26 00022 

00034603 2010-04-07 
09:29:58 39.73592 116.1357 19.63 00022 

00034603 2010-04-07 
09:30:28 39.73479 116.1357 0 00022 

00034603 2010-04-07 
09:30:58 39.73420 116.1357 3.52 00022 

The first step is to estimate the bus arrival time for each stop by joining GPS data 

and the stop-level geo-location data. A buffer area can be created around each particular 

stop for a certain transit route using the ArcGIS software. Within this area, several GPS 

records are likely to be captured. However, identifying the geospatially closest GPS record 

to each particular stop is challenging since there could be a certain number of unknown 

directional GPS records within the specified buffer zone. Thanks to the powerful geospatial 

analysis function in GIS, each link (i.e. polyline) where each transit stop is located is 

composed of both start node and end node, and this implies that the directional information 

for each GPS record is able to infer by comparing the link direction and the direction 

changes from two consecutive GPS records. With the identified direction, the distance from 

each GPS point to this particular stop can be calculated, and the timestamp with the 

minimum distance will be regarded as the bus arrival time at the particular stop. Figure 3-2 

visually demonstrates the above algorithm procedure. Inbound stop represents the physical 

location of a particular transit stop, and this stop is snapped to a transit link, whose direction 
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is regulated by both a start node and an end node. By comparing the driving direction from 

GPS records with the link direction, the nearest GPS records to this particular stop can be 

identified, and marked by the red five-pointed star on the map. The timestamp associated 

with this five-pointed star will be considered as the estimated arrival time for this inbound 

stop.  

The merit of the bus arrival time estimation algorithm lies in its efficiency. Rather 

than searching all the GPS data to identify the traveling direction for each stop, the 

proposed algorithm shrinks down the searching area, and filters out those unlikely GPS data. 

The operation greatly alleviates the computational burden, and is relatively easy to 

implement in the large-scale datasets, which is particularly critical to process the 

tremendous amount of datasets within an acceptable time period.   
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Figure 3-2 Boarding Time Estimation with GPS Data and Transit Stop Location Data 

3.1.2 Passenger Boarding Location Identification with Smart Card 

Data 

For each smart card data transaction record, the boarding stop can be estimated by 

matching the recorded timestamp and identified bus arrival time. As presented in Figure 3-3, 

for each smart card transaction record, the transaction time is compared with the inferred 

bus arrival time at each stop. This record will be assigned to a particular stop where the bus 

arrival time is the closest to the transaction time. Since passengers board the bus in a 

relatively short time interval, this data fusion method is able to capture almost all missing 

boarding stops. 
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Figure 3-3 Boarding Stop Identification with Bus Arrival Time 

In addition, because all the arrival time for all stops of a particular transit route can 

be estimated, the average travel time between two adjacent stops can be calculated as well 

and can be used to determine the average travel speed.  Speed statistics are not only critical 

for transit performance measures, but also provide prior information for passenger origin 

inference when GPS data are absent. 

3.1.3 Validation 

Compared with bus arrival time, door opening time can be more accurately matched 

with smart card transaction time. This is because each bus may not exactly stop at each 

transit stop for passenger boarding. The inferred bus arrival time is subject to incur errors 



www.manaraa.com

31 

 

when it is used to match with smart card data. To validate the accuracy of the proposed data 

fusion algorithm for passenger origin inference, an on-board transit survey was undertaken 

to collect bus door opening time and arrival location for each stop of route 651 on January, 

13th, 2013. Hand holding GPS devices were distributed to several volunteers to manually 

track the geospatial location of moving buses every 15 seconds. The survey duration was 

from 8:00 AM to 1: 00 PM, and a total of 75 bus door opening times were manually 

recorded. These bus door opening time records were then used to match the timestamps of 

smart card transactions from 417 passengers for boarding stop estimation, and these 

estimated stops can be considered as the ground-truth data. By comparing the ground-truth 

data with the results from the proposed GPS data fusion approach, 406 boarding stops were 

accurately inferred and 11 boarding stops differ from the ground-truth data within one-stop-

error range. The proposed algorithm has an accuracy rate of 97.4%. 

3.2 Passenger Origin Inference with Smart Card Data 

There are still a fair amount of buses without GPS devices, and thus the bus arrival 

time at each transit stop is not directly measured. However, most passengers scan their 

cards immediately when boarding and almost all passengers should complete the check-in 

scan before arriving to the next stop. This indicates that the first passenger’s transaction 

time can be safely assumed as the group of passengers’ boarding time at the same stop. The 

challenge is then to identify the bus location at the moment of the SC transaction so that we 

can infer the onboard stop for that passenger. However, this is not easy because the SC 

system for the flat-rate bus does not record bus location. We know the time each transaction 
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occurred on a bus of a particular route under the operation of a particular driver, but nothing 

else is known from the SC transaction database. Nonetheless, we are able to extract 

boarding volume changes with time and passengers who made transfers. By mining these 

data and combining transit route maps, we may be able to accomplish our goal. Therefore, a 

two-step approach is designed for passenger origin data extraction: smart card data 

clustering and transit stop recognition. To implement the proposed algorithm in an efficient 

manner, a Markov Chain based optimization approach is applied to reduce the 

computational complexity.   

3.2.1 Smart Card Data Clustering 

Transaction Data Classification 

First of all, we need to sort SC transactions by the transit vehicle number. This 

results in a list of SC transactions in the vehicle for the entire period of operations for each 

day. During the operational period, the vehicle may have two to ten round-trip runs 

depending on the round-trip length and roadway condition. At a terminal station, a transit 

vehicle may take a break or continue running. So there is no obvious signal for the end of a 

trip (a trip is defined as the journey from one terminus to the other terminus). Meanwhile, 

there are a varying number of passengers at each stop, including some stops with no 

passengers.  

For stops with several passengers boarding, all transactions can be classified into 

one group based on interval between their transactions. Thus, the clustered SC transactions 
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can be represented by a time series of check-in passenger volumes at stops as shown in 

Table 3-2. 

Table 3-2 Examples of Clustered SC transactions 
 

Transaction 
Cluster No. Stop ID Stop Name Total 

Transactions 
Transaction 
Timestamp 

Time 
Difference 

1 Unknown Unknown 18 5:26:36 0:14:26 
2 Unknown Unknown 9 5:41:02 0:03:16 
3 Unknown Unknown 11 5:44:18 0:04:35 
4 Unknown Unknown 27 5:48:53 0:01:00 

In Table 3-2, total transactions indicate the total boarding passengers in one stop; 

transaction timestamp is recorded as the time when the first passenger boards in this stop, 

and time difference means the elapsed time between the boarding time at this stop and next 

stop with boarding passengers. Unlike most entry-only AFC systems in the United States, 

stop name and ID from each transaction are unknown in Beijing’s AFC system. Most buses 

in service follow the predefined order of stops, however, it is still possible that there is no 

passenger boarding at a specific stop, and thus two consecutive SC transaction clusters do 

not necessarily correspond to two physically consecutive stops. Obviously, this further 

complicates the situation and the algorithm needed is indeed to map each cluster into the 

corresponding boarding stop ID. 

In summary, the smart card data clustering algorithm contains three steps as follows:  

1.  All transaction data for each bus are sorted by the transaction timestamp in an 

ascending order. 
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2. For two consecutive records, if their transaction time difference is within 60 sec, then, 

these two transactions are included in one cluster; otherwise, another cluster is 

initiated.  

3. If the transaction time difference for two consecutive records is greater than 30 min or 

driver changing occurs, it is likely that the bus has arrived in terminus, and for this bus, 

one bus trip has completed. Next record will be the beginning for the next bus trip.  

The result of the clustering process is several sequences of clustered transactions. 

Each sequence may contain one or more trips of the transit vehicle. For particular routes, 

due to the limited space in terminus or busy transit schedule, bus layover time may be too 

short to be used as a separation symbol for trips. Such buses may have a very long clustered 

sequence that makes the pattern discovery process very challenging. Furthermore, 

unfamiliar passengers or passengers boarding from the check-out doors (this happens for 

very crowded buses) may take longer than 60 seconds to scan their cards. The delayed 

transaction may cause cluster assignment errors. Again, this adds extra challenge to the 

follow-up passenger origin extraction process. 

Transaction Cluster Sequence Segmentation  

Beijing has a huge transit network with nearly 1,000 routes. It is quite common to 

see passengers transfer between transit routes. Through transfer activity analysis, we can 

further segment the clustered transaction sequence into shorter series to reduce the 
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uncertainty in passenger OD estimation (Jang, 2010). Two key principles used in the 

transfer stop identification are:  

(1) We assume the alighting stop in the previous route is spatially and temporally the 

closest to the boarding stop for the next route. This is reasonable because most 

passengers choose the closest stop for transit transfer within a short period of time (Chu, 

2008). Assume a passenger k makes a transfer from route i to route j within n minutes. 

If route i is a distance-based-rate bus line or a subway line, then we can identify the 

transfer station that is also the boarding stop of route j. Even if both routes are flat-rate 

bus routes, if the transferring location is unique, we can still use the transfer information 

to identify the transfer bus stop ID and name. In this study, the transfer time duration n 

is 30 minutes, and the maximum distance between two transfer stops is 300 meters.  

(2) We assume that both the alighting time and the boarding time for each particular stop is 

similar. In this case, we can substitute a passenger’s boarding stop with another 

passenger’s alighting stop. Assume a passenger k makes a transfer from route i to route j. 

If route j is a subway line, where both its boarding location and time are available, then 

we can estimate the passenger k’s alighting stop of route i, and this alighting stop can be 

also considered as the boarding stop for those passengers who get on the bus at the same 

time. 

Walk distance between the two stops should be taken into account for inferring the 

time when the flat-rate bus arrives at the transfer stop. However, several possible boarding 
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stops may exist due to the unknown direction in the flat-rate smart card transaction, and 

thus additional data mining techniques are needed to find the boarding stop with the 

maximum likelihood. These data mining techniques will be detailed in the next section.   

Based on the identified transfer stops, we can further segment the transaction cluster 

sequence into shorter cluster series. Each series is bounded by either the termini or the 

identified bus stops. The segmented series of transaction clusters will be used as the input 

for the subsequent transit stop inference algorithm. 

3.2.2 Data Mining for Transit Stop Recognition  

Bayesian Decision Tree Inference  

If we treat each segmented series of transaction cluster as an unknown pattern, this 

unknown pattern can be considered as a sample of the sequential stops on the bus route. If 

every stop has several passengers for boarding, this unknown pattern is identical to the 

known bus stop sequence. Also, since distance and speed limit between stops are known, 

travel time between stops is highly predictable if there is no traffic jam. In reality, however, 

there may have varying distribution of passengers boarding at any given stop and roadway 

congestion may cost unpredictable delays. Therefore, the unknown pattern recognition is a 

very challenging issue. Once the unknown pattern is recognized, the boarding stop for any 

passenger becomes clear. 

Bayesian decision tree algorithm is one of the widely used data mining techniques 
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for pattern recognition (Janssens et al., 2006). Each node in the Bayesian decision tree is 

connected through Bayesian conditional probability, and the entire tree is constructed 

directionally from the root node to the leaf nodes. Applying this technique to the current 

problem, we can represent the known starting stop as the root. if we denote the current 

boarding stop ID at time step k as kS , and at time step k+1, the next boarding stop ID as 

1kS + , according to Bayesian inference theory (Bayes and Price, 1763), 1kS +  can be calculated 

as: 

                                1 1 1 2arg max(Pr( | , ... ))k k kj
S S j S S S+ += =                                          (3-1) 

where 1 1 2Pr( | , ... )k kS S S S+ =conditional probability of the next boarding stop being 1kS + , 

given the previous boarding stop sequence 1 2, ... kS S S . 

A Bayesian decision tree represents many possible known patterns. We need to 

compute the probability for each known pattern to match the unknown pattern. By further 

observation, we can find due to the nature of transit route, the probability of passengers 

boarding at 1kS +  at time step k+1 is only related to whether the last boarding stop was kS at 

time step k. That is because if the transaction time and corresponding bus location for SC 

transaction cluster k is known, the next SC transaction cluster k+1 only relies on how fast 

the bus travels during the time period between SC transaction clusters k and k+1. In this 

case, a SC transaction series can be recognized as a Markov chain process. Markov chain is 

a stochastic process with the property that the next state only relies on the current state. 
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Therefore, 1kS +  can be rewritten as: 

1 1 1 2 1arg max(Pr( | , ... )) arg max(Pr( | ))

     

k k k k kj j
S S j S S S S j S i

subject to i j

+ + += = = = =

<
                              (3-2) 

The single-step Markov transition probability is defined as 1Pr( | )k kS j S i+ = = , also 

denoted as ijp , with i, j being the stop IDs. Without losing generality, we assume the bus is 

moving outbound with an increasing trend of stop ID toward the destination. Then the 

transition probability matrix Π can be simplified as: 
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                                (3-3) 

where n=the total number of stops for the bus route. This transition probability 

matrix plays a vital role in determining the potential stop ID for the next time step.  

Transition Matrix Generation 

To recognize the unknown pattern, it is critical to develop a measure to quantify ijp , 

the possibility of next boarding stop being stop j conditioned on the previous boarding stop 
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being i. The higher ijp  is, the more likely the next SC transaction cluster corresponds to 

boarding passengers at stop j. In other words, ijp  represents the probability for the next SC 

transaction cluster timestamp being the bus boarding time at stop j. That is to say, the 

boarding time in stop j for cluster k+1 can be predicted based on the travel distance from 

stop i to stop j and average bus speed. Then, the calculated time can be used as an indicator 

to compare with the real transaction timestamp for cluster k+1. From this point, the average 

speed between stops i and j will be a key variable. If the timestamp for cluster k is kt , and 

that for cluster k+1 is 1kt + , then, the bus travel time from time step k to time step k+1 is 

1k kt t+ − , and the stop distance between stop j and stop i is ijD , then, the average bus travel 

speed ijV  can be expressed as: 

                                                    
1

ij
ij

k k

D
V

t t+

=
−

                                                          (3-4) 

Where ijV  is a random variable depending on the traffic condition at the moment. ijV  

is considered to be normally distributed, and its probability density function can be adopted 

to quantifying ijp . 

In the speed normal distribution, the mean travel speed ijµ  and standard deviation 

ijσ  can be calculated from all buses with GPS devices in the same route. Under this 

circumstance, the boarding time for each stop can be inferred by matching GPS data and 

stop location information. Using the inferred boarding time difference and distance between 
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stop i and stop j, we can calculate the mean travel speed ijµ  and standard deviation ijσ  as a 

priori information. It is noteworthy that the speed mean and standard deviation are not 

dependent on GPS data, but can be also obtained by other data sources such as distance-

based-rate SC transaction data. A sensitivity analysis further demonstrates the algorithm’s 

robustness even with different speed data sources. 

Then, the transition probability can be reformulated as: 

                       
1

2 2

Pr( | )

1 1    exp( / 2) exp( / 2) 2 ,
2 2

ij

ij

ij k k

z

ij
z

p S j S i

z dz z
∆

∆

= ∆

+

+

−

= = =

= − − ⋅
p p∫

                            (3-5) 

where ij ij
ij

ij

V
Z

µ
σ
−

= , which is the standardized travel speed between stop j and stop i , 

Δ is a small increase value for travel speed, and it will not impact the algorithm result, since 

this is a common term for each transition probability. In practice, to avoid the fast growth of 

Bayesian decision tree, the transition probability can be bounded by a minimum probability 

to eliminate those unlikely stops during calculation.  

Each element in transition matrix can be quantified in the same way as shown in 

Equation (5). With the complete transition matrix, the unknown pattern of SC transaction 

series can be recognized as: 
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Here, 1
1

1
( 1) Pr( | )

k
k n n

n
P k S j S i+

+
=

+ = = =Π  denotes the geometric mean probability of 

passengers boarding stop sequence at time step k+1. It is also the probability for the 

identified stop sequence to match the unknown pattern. 

3.2.3 Algorithm Implementation and Optimization 

 Implementation  

As mentioned in the previous sections, due to the nature of transaction data, several 

issues need to be addressed in the process of Markov chain based Bayesian decision tree 

algorithm: 

1. Direction identification: 

Beijing transit AFC system doesn’t log the travel direction information for each 

route. We need to determine whether the bus is traveling inbound or outbound before 
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algorithm execution. The solution is that we construct two Bayesian decision trees in each 

direction. Then the probability of the most likely stop sequence from each of trees will be 

compared and the one with the highest path probability wins.   

2. Outlier removal 

As mentioned in the Smart Card Data Clustering section, in some cases, the delayed 

transactions impact the accuracy of clustering algorithm, and these abnormal transactions 

are also labeled as outliers. The principal difficulty is that two inconsistent SC transactions 

by timestamp that should be classified in one cluster may be read separately, and thus, the 

latter will be classified as another cluster for the next stop. For instance, at a particular stop, 

if one passenger boarded the bus and paid the fare at 8:00 AM, another passenger swiped 

his smart card to alight at 8:10 AM. Due to the relative large transaction timestamp gap, the 

second transaction will be assigned to another cluster. In this case, the boarding stop ID will 

be misidentified. 

The strategy used to remove these outliers is that there exists a probability that a 

passenger may retain in the same stop. If the previous stop ID is defined as i , the number of 

total stops in each possible direction is denoted as N , and the probability that a passenger 

stay at stop i in the next time step can be expressed as: 

                                           
1

1
j N

ii ij
j i

p p
≤

= +

= − ∑                                                              (3-7)  
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The probability is able to better depict the situation where passengers may delay a 

certain period to swipe their smart cards during boarding.   

3. Bus trip detection 

The journey begins from the initial bus stop to the terminus is defined as a bus trip. 

The bus terminus is designed for bus turning, layover, and driver change. It is also the 

starting stop on the bus timetable. However, in Beijing’s transit network, some bus termini 

are located in the busy street or have limited space. Hence, buses using these termini have 

to begin their next trip in a short time period without causing an obstruction. This is a 

challenging issue in the procedure of passenger origin inference, since the initial stop (root 

node) in Bayesian decision tree may be misidentified if the bus trip is mistakenly detected. 

The solution to this issue is to model the travel time probability of each transaction cluster 

series. As indicated in the transaction cluster sequence segmentation section, a transaction 

cluster sequence can be segmented by several series using aforementioned spatiotemporal 

transfer relationships. Each identified series is bounded by possible inferred stops, by 

calculating the travel time for multiple combinations of inferred stops, and comparing with 

the actual time difference, we are able to determine the existence of a bus trip based on the 

highest probability. Figure 3-4 demonstrates the procedure of identifying a bus trip. 
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Stop 5
(inbound)

Actual Stop ID       5 (inbound) 12 (inbound) 2 (outbound)

Bus Trip End

20 minutes

Segment 1 Segment 2

Stop 13
(outbound)

Stop 11
(inbound)

Stop 2
(outbound)

 
Figure 3-4 Bus Trip Identification 

As presented in Figure 4-3, the starting point and ending point of a transaction 

sequence can be identified by several possible stops in different directions, and the duration 

of this transaction clustered sequence is known as 20 minutes.  A variety of trips may exist 

for this transaction cluster sequence: 

Trip 1: The bus travels from the 5th inbound stop to the 11th inbound stop.  

Trip 2: The bus travels from the 5th inbound stop to the 2nd outbound stop. 

Trip 3: The bus travels from the 13th outbound stop to the 11th inbound stop. 

Trip 4: The bus travels from the 13th outbound stop to the 2nd outbound stop. 

The maximum and minimum travel time for any trip can be obtained through GPS 

data or distance-based buses. In addition, the maximum bus layover time can be assumed as 

30 minutes. According to the central limit theorem, the bus travel time in a known road 
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segment should follow normal distribution, and therefore, we can compute the probability 

of each scenario, and choose the trip with the maximum probability.  If the travel time from 

stop i to stop j is denoted as ijt , and the probability density function of ijt  is defined as: 

2

22

( )1( ) exp( )
22

ij ij
ij ij

ijij

t
p t dt

µ
σσ

−
= −

p
                                                                      (3-8) 

Where ijµ  is the average travel time from stop i to stop j, and ijσ  is the standard 

deviation of travel time from stop i to stop j. If the maximum and minimum travel time 

(plus maximum and minimum bus layover time) between stop i to stop j are max( )ijt  and 

min( )ijt  respectively, then the 95% confidence interval of travel time can be further 

expressed as:  

[ 1.96 , 1.96 ] [min( ),max( )]ij ij ij ij ij ijt tµ σ µ σ− + =                                                               (3-9) 

The probability density function of ijt can be rewritten as: 

2

22

max( ) min( )
( )1 2( ) exp( )max( ) min( )max( ) min( ) 2( )2 ( ) 3.923.92

ij ij
ij

ij ij
ij ijij ij

t t
t

p t dtt tt t

+
−

= −
−−

p

                (3-10) 

Each probability for the above four trips can be calculated as 0.54, 0.87, 0.0003,0 

respectively. Therefore, the transaction cluster sequence starts at the 5th inbound stop, and 
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ends at the 2nd outbound stop, and thus a terminus (bus trip end) should exist during this trip. 

This result matched with the actual bus trip. In these cases, the proposed Bayesian decision 

tree algorithm is able to identify each bus trip from the clustered transaction sequence.  

Computational Performance Optimization 

Although we illustrated the mathematical form for Markov chain based Bayesian 

decision tree in theory, this algorithm presented above has not been applied in the real 

dataset. Cooper (1990) has proven Bayesian decision tree algorithm a NP (Non-

deterministic Polynomial)-hard problem, which means that this algorithm cannot be solved 

in a polynomial time. Conventional approach to calculate the path probability for all the 

potential boarding stop sequences is computationally expensive, especially for the long 

sequences. To better explain this challenge, an example is shown as follows: 

1

42 3

53 4 64 5 75 6

0.36 0.32 0.27 0.31 0.21 0.19 0.12 0.07 0.04Path Probability:   

Figure 3-5 A Bayesian Decision Tree Algorithm Example 
 

Assume the initial boarding stop is 1. The potential stops in the next step could be 
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stop 2, stop 3, or stop 4 because they are all in the reachable range. Assuming that the 

situations are similar for the remaining stops, a decision tree is fully established. The 

traditional exhaustive search is to traverse each potential path, and select the maximum 

probability. Based on this method, we need to calculate the path probability nine times. This 

implies that the number of paths to be calculated increases exponentially as the time step 

increases. However, at the time step 3, there are two or more paths ending with stop 3, 4 

and 5. Before carrying on the computation in the next time step, we can compare the 

probability of the paths with the same ending stop, and choose the maximum one, which is 

also called the partial best path, that is:  

In the time step 3, only the following five paths are selected 1->2->3, 1->2->4,1->2-

>5,1->3->6, and 1->4->7. Recall that the Markov Chain model states that the probability of 

current state given a previous state sequence depends only on the previous state. Hence, 

five paths calculated in time step 3 guarantees the most probable paths in time step 4 

without extra computations of other paths. According to Equation (3-11), we can express 

the optimized procedure in mathematics as: 

                               1
1,

( 1) max( ( )( Pr( | )))k
k ki j

P k P k S j S i+
++ = = =                                (3-11) 

We can now calculate the probability at each time step recursively until the end of 

the route. Computing the probability in this way is far less computational expensive than 

calculating the probabilities for all sequences. If we denoted the total stops for a specific 

route as n, and the SC transactions are classified in m clusters, which correspond to m time 
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steps in Bayesian decision trees, then the computational complexity for the exhaustive 

approach can be written as ( )nO m . While using the optimized algorithm, the computational 

complexity is only ( )O mn . With the optimization, the algorithm can be solved in a finite 

time, and can be efficiently applied in reality.  

3.2.4 Validation  

By installing GPS receivers on flat-rate buses, we can collect the geospatial 

information and spot speed data in a real-time manner. There are approximately 50% buses 

equipped with GPS devices in Beijing, and GPS data are updated every 30 seconds. These 

data provide the opportunity to validate the Markov-chain based Bayesian decision tree 

algorithm developed in this study for passenger origin data extraction. GPS coordinates and 

timestamp can be used to determine bus boarding and alighting location and time 

respectively. First, the geographical feature of bus stops and consecutive GPS records for 

each bus are joined using latitude and longitude coordinates. Then, by matching the 

passenger check-in time in the SC transaction database, the boarding stop ID can be 

associated with each transaction. Since the inferred stop ID using GPS data have been 

validated using the bus on-board survey method, and can be considered as the ‘ground 

truth’ data for the comparison purpose. 

In this section, the Markov chain based Bayesian decision tree algorithm is first 

validated using GPS data for route 22, and then, several sensitivity analyses are conducted 

to investigate impacts of different parameter settings in Bayesian decision tree. Finally, a 



www.manaraa.com

49 

 

computational complexity experiment is also included at the end of this section.  

Algorithm Validation  

Flat-rate based route 22 was selected to infer unknown boarding location using 

Markov-chain-based Bayesian decision tree algorithm, and GPS data associated with route 

22 were also collected to verify the result. The SC transaction data and GPS data were all 

recorded on April 7, 2010. The minimum stop probability is defined as 0.05. If a stop whose 

transition probability is less than 0.05, then this stop will be abandoned. Route 22 contains a 

total of 34 inbound and outbound stops as shown in Figure 3-6.  
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Figure 3-6 Route 22 in Beijing Transit Network 

The algorithm results are listed as in Table 3-3 and Figure 3-7. In Table 3-3, there 

are a total of 12,675 SC transactions mapped with GPS data for Route 22. Error is defined 

as the stop ID difference (two stops that are adjacent to each other should have consecutive 

IDs) between the ground truth stop based on GPS data and the inferred stop using the 

proposed algorithm. For Route 22, 95% passenger boarding stops were deducted by the 

proposed algorithm. 55.8% of results perfectly matched with the stops inferred by GPS 

accurately. There are 11,645 recognized boarding stops within three-stop distance away 

from the actual boarding stop, accounting for approximately 96.7% of the total identified 
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records or 91.6% of total records.  

Table 3-3 Results of Bayesian Decision Tree Algorithm for Route 22 Based on GPS 
Speed 

 

Route 22 
Number 

of 
records 

Accumulated 
percentage in 

inferred records 

Accumulated 
percentage in total 

records 
Stop ID error<1 7062 58.6% 55.8% 

Stop ID error<2 10371 86.1% 81.8% 

Stop ID error<3 11341 94.2% 89.5% 

Stop ID error<4 11645 96.7% 91.9% 

Total 12043 N/A 97.9% 

 
 

 
 

Figure 3-7 Bayesian Decision Tree Algorithm Accuracy for Route 22 Based on GPS 
Speed 

The results are very encouraging. In Beijing’s transit network, the error within three 

stops is acceptable for transit planning level study, since these stops are mostly affiliated 
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with the same traffic analysis zone (TAZ) due to the high transit network density.  

Sensitivity Analysis 

(1) source of travel speed calculation 

Recall that in computing the transition matrix, mean travel speed µ and standard 

deviationσ  were extracted from GPS data. However, there are still many flat-rate routes 

without GPS devices. To understand how the algorithm result changes when the travel 

speed mean and standard deviation are inaccurate, a sensitivity analysis is carried out for 

this purpose. Table 3-4 and Figure 3-8 show the results when the mean and standard 

deviation of travel speed are retrieved from the distance-based fare routes, and these routes 

share common stops with the “no-GPS” flat-fare route. Because both boarding stop and 

alighting stop are known in the distance-based fare buses, we are still able to extract the 

mean and standard deviation of travel speed between adjacent stops for transition matrix 

construction. 

Table 3-4 Results of Bayesian Decision Tree Algorithm for Route 22 Based on Speed 
from Distance-based Fare Routes 

 

Route 22 
Number 

of 
records 

Accumulated 
percentage in 

inferred records 

Accumulated 
percentage in total 

records 
Stop ID error<1 6841 58.5% 54% 

Stop ID error<2 10319 88.2% 81.4% 

Stop ID error<3 11296 96.6% 89.1% 



www.manaraa.com

53 

 

Stop ID error<4 11509 98.4% 90.8% 

Total 11694 N/A 92.2% 

 
 
 

 
 
 

Figure 3-8 Bayesian Decision Tree Algorithm Accuracy for Route 22 Based on Speed 
from Distance-based Fare Routes 

 

Different data sources only slightly influence the percentage of inferred stops. 

92.2% boarding stops can be estimated using the speed generated from distance-based fare 

routes, and the accuracy within three-stop error is 90.8%. The result indicated the proposed 

algorithm is not sensitive to the travel speed, even without GPS data, we are still able to 

correctly identify passenger boarding stops using other data sources. This is not surprising, 

because in normal distribution, mean and standard only influence the shape for probability 

density function, as long as we make a reasonable assumption for bus travel speed 

calculation, the algorithm results will not fluctuate significantly.   
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(2) minimum stop probability 

Minimum stop probability plays a vital role in impacting both the accuracy and 

efficiency of the proposed algorithm. A too high threshold may eliminate possible boarding 

stop candidates, and a too low threshold may consume additional computational resources. 

In this sensitivity analysis, a different minimum stop probability is set as 0.1, which means 

if the calculated transition probability of a particular stop is lower than 0.1, and then this 

stop is considered as an unlikely boarding stop.  The comparison result is presented in Table 

3-5 and Figure 3-9: 

Table 3-5 Results of Bayesian Decision Tree Algorithm for Route 22 with Minimum 
Stop Probability as 0.1 

 

Route 22 
Number 

of 
Records 

Accumulated 
Percentage in 

inferred records 

Accumulated 
Percentage in total 

records 
Stop ID error<1 6011 55.2% 47.4% 

Stop ID error<2 9157 84.0% 72.2% 

Stop ID error<3 10139 93.1% 80.0% 

Stop ID error<4 10589 97.2% 83.5% 

Total 10894 N/A 85.9% 
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Figure 3-9 Bayesian Decision Tree Algorithm Accuracy for Route 22 with Minimum 
Stop Probability as 0.1 

 

When the minimum stop probability increases, less boarding stops can be inferred 

using the proposed algorithm. In addition, the inferred boarding stops are less accurate 

compared with the ones with minimum stop probability as 0.05. This is a reasonable result 

since a rigorous probability threshold may limit the prorogation of errors. However, a trade-

off exists between algorithm accuracy and efficiency.  

Computational complexity comparison  

As mentioned in the algorithm optimization section, the computational complexity 

should be also taken into account when the proposed algorithm is implemented in a large-
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scale transit network. To compare the algorithm efficiency between the basic Bayesian 

decision tree algorithm (Basic BDC) and the Markov chain based Bayesian decision tree 

algorithm (Markov-chain BDC), seven transit routes with an increasing number of total 

stops are tested. 10,000 smart card transactions for each route on April, 7, 2010 are used for 

comparison purposes. The experimental result is listed in table 3-6 and figure 3-10. 

Table 3-6 Computational Complexity Comparison between Basic and Markov-chain 
Based Bayesian Decision Tree Algorithms 

 

Route ID Number 
of stops 

Run time for 
Markov-chain 

BDC (milliseconds) 

Run time for Basic 
BDC(milliseconds) 

00616 23 3798 493740 

00647 36 4890 674820 

00005 53 7747 937387 

00839 66 17082 1947348 

00355 74 21071 2486378 

00646 80 23979 4556010 

00603 86 29114 5560774 
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Figure 3-10 Markov Chain based Bayesian Decision Tree Algorithm Run Time 
Analysis 

The Markov chain based BDC algorithm can save a significant amount of run time 

compared with the Basic BDC algorithm. The average performance gains can achieve to 

142 times faster than the basic algorithm. This is because most of the redundant calculation 

steps have been already excluded using Markov chain property.  

3.3 Conclusion  

Different from most entry-only AFC systems in other countries, Beijing’s AFC 

system does not record boarding location information when passengers embark the buses 

and swipe their smart cards. This creates challenges for passenger OD estimation.  
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This chapter aims to tackle this issue. With further investigations on SC transactions 

data, we proposed a Markov chain based Bayesian decision tree algorithm to infer 

passengers boarding stops. This algorithm is based on Bayesian inference theory, and the 

normal distribution of travel speed between adjacent stops is used to depict the randomness 

of passenger boarding stops. Both the mean and the standard deviation can be obtained 

from GPS data or distance-based fare routes. Moreover, stationary Markov chain property is 

also incorporated to further reduce the computational complexity of the proposed algorithm 

to linear. The optimized algorithm is proven its accuracy using the SC transaction data. 

This algorithm can be improved in various ways; for instance, the algorithm does 

not perform well under the circumstance that the travel speed between adjacent stops is not 

distinct, i.e. the travel speed probability calculated for each stop is similar. The potential 

countermeasure for this issue is to incorporate heterogeneity, e.g., the accessibility of a 

subway station or a central business district (CBD) for each transit stop. 

In summary, the Markov chain based Bayesian decision tree algorithm provides 

both effective and efficient data mining approach for passenger origin data extraction. It 

sets up a great foundation to mine transit passenger ODs from the SC transaction data for 

transit system planning and operations. 

 

 
 



www.manaraa.com

59 

 

Chapter 4 Transit Passenger Travel Pattern 

Mining 

To demonstrate the temporal travel patterns and the pattern regularity for transit 

riders in Beijing, consider a typical travel week (in this case, the week of Monday July 5th 

to Friday July 9th, 2010). The transaction data from 3,845,444 smart cards was collected for 

that week, 58% of which (2,225,298 cards) contained two transactions for all five weekdays. 

FIGURE 1 shows the temporal frequency distribution of the “transaction pair” of the first 

transaction time and the last transaction time of the smart cards with two transactions per 

day. As shown in the red cells of FIGURE 1, most of the transit riders began their first trip 

between 6 AM and 10 AM, and ended their travel for the day between 4:00 PM and 8:00 

PM. This is likely to represent a typical commuting trip chain, where a transit rider takes a 

bus or subway from his or her home to their place of work in the morning and then returns 

home in the evening. The temporal distribution shown in the figure implies that strong 

temporal travel patterns exist in the multiday smart card data. However, the regular spatial 

travel pattern for a specific card holder remains uncertain and will be explored in the 

analysis described below.   
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Figure 4-1 Weekday Temporal Distribution for Transit Smart Card Holders with Two 
Transactions for the week of 5th-9th July 2010 

The focus of this study is twofold: individual travel pattern recognition and travel 

regularity mining. A flow chart of the work performed for the study is illustrated in 

FIGURE 2: (1) retrieve each passenger’s multi-day’s smart card transactions from the 

database; (2) generate this passenger’s trip chains utilizing their spatiotemporal 

relationships; (3) apply a series of data mining approaches to extract this passenger’s travel 

pattern and travel regularity based on the generated trip chains. To reduce the complexity 

involved in the regularity clustering algorithm, association rules were identified for the 

large-scale smart card data mining process.            
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Figure 4-2 Flow Chart of the Study Research Process 

4.1 Trip Chain Generation 

Before the spatial and temporal patterns of individual transit riders can be examined, 

their trip chain information must be constructed. A trip chain is defined as a series of trips 

made by a traveler on a daily basis and is considered a useful way to demonstrate travelers’ 

behaviors (McGuckin and Nakamoto, 2004). For flat fare buses, transit riders swipe their 

smart cards only during boarding and the smart card reader is not able to record either their 

boarding location or when and where they alight. In order to estimate transit riders’ 

boarding stops, a Markov chain based Bayesian decision tree algorithm by (Ma et al., 2012) 

was therefore utilized to extract changes in the boarding volume with time between two 

consecutive transactions and apply this information, in conjunction with historical speed 

profiles retrieved from GPS data, to calculate the probabilities for all potential boarding 

stops; the stop with the maximum probability was assumed to be the boarding stop. Based 
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on this algorithm, more than 90% of the smart card data can be accurately assigned. For 

distance-based fare buses, although boarding times are not recorded by the smart card 

reader, other information such as each passenger’s boarding stop location, alighting stop 

location, and alighting time are known. Therefore, the missing boarding time can be 

approximately substituted by another passenger’s alighting time at the same stop. 

A fixed temporal threshold was used in our study to link several smart card 

transaction records into a trip chain. Fixed temporal thresholds change depending on the 

type of transfer activity. For instance, if a passenger transfers from a distance-based fare bus 

to a flat fare bus, the alighting time in the previous trip and the boarding time in the current 

trip are known and the appropriate 30 minute time interval recorded. However, if this 

passenger makes a transfer from a flat fare bus to a distance-based fare bus, the alighting 

time is not recorded when he/she exits from the flat fare bus so a 60 minutes time interval 

was utilized to differentiate various trips in this study to take into account both in-vehicle 

travel time and transfer time. The determination of transfer time intervals for different 

transfer activities was based on the 2010 Beijing 4th Comprehensive Transport Survey 

(Beijing Transportation Research Center, 2012), with the average transit transfer time and 

in-vehicle travel time being 25.4 minutes and 40 minutes, respectively. The same survey 

revealed that more than 94% of the transfer activities took less than 60 minutes, so if the 

transaction time difference between two consecutive smart card records was greater than 60 

minutes, a new trip was generated; times less than this were taken to represent a transfer 

activity between two routes or two transportation modes (bus and subway) (Jang, 2010).  
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Table 4-1 shows linked trip chain examples extracted from the study data. Here, 

Chain ID is a unique identifier for each trip chain sorted in ascending order by the 

transaction time. For each Card ID, the first trip’s boarding time (First Boarding Time) and 

the last trip’s alighting time (Last Alighting Time) are associated with that Chain ID. Route 

Sequence refers to the routes the rider took and Stop ID Sequence refers to the boarding and 

alighting stop IDs for distance-based fare buses. As previously noted, only distance-based 

fare buses and subways record both boarding and alighting locations, but the subway AFC 

system also has no check-out smart card scan reader when transit riders transfer between 

different lines. Take Chain ID 46388399 as an example. The transit rider boarded the 

distance-based fare bus on Route 635 at Stop ID 99964, and alighted at Stop ID 99966.That 

individual then made a transfer to subway Line 5 at Stop ID 50258, finishing his or her 

journey by exiting subway Line 10 at Stop ID 50167. Due to the lack of alighting location 

information for flat fare buses, some of the trip chains suffer from missing alighting time 

and stop ID sequence information, e.g. Chain ID 46388408 in TABLE 1. However, this 

does not have a huge impact on the accuracy of the individual travel pattern recognition and 

regularity clustering algorithms since both algorithms are capable of handling both missing 

values and outliers. 
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Table 4-1 Extracted Trip Chain Information for an Individual Transit Rider for the 
Week of 5th-9th July, 2010 

 

Chain 
ID Card ID Date 

First 
Boarding 

Time 

Last 
Alighting 

Time 

Route 
Sequence Stop ID Sequence 

46388399 1000751018309337 20100705 07:08:45 07:47:28 00635->10->13 99964,99966->50258,50167 
46388400 1000751018309337 20100705 18:15:24 18:53:10 13->10->00635 50192,50245>100013,100015 

46388401 1000751018309337 20100706 07:19:21 08:01:13 00350->10->13 91267,91269->50258,50167 

46388402 1000751018309337 20100706 17:56:08 18:49:50 13->10->00635 50192,50245>100013,100015 
46388403 1000751018309337 20100707 07:10:43 07:49:21 00635->10->13 99964,99966->50258,50167 

46388404 1000751018309337 20100707 18:29:00 19:06:47 13->10->00350 50192,50245->91276,91278 
46388405 1000751018309337 20100708 21:13:58 21:40:10 5->10 50125,50246 

46388406 1000751018309337 20100709 07:16:24 08:03:46 00635->10->13 99964,99966->50258,50167 
46388407 1000751018309337 20100709 17:25:00 18:11:59 13->10->00635 50192,50245>100013,100015 

46388408 1000751018309337 20100709 18:30:31 NULL 00031 NULL 

Note: Subway routes are denoted as one or two digits.  
 

4.2 Individual Travel Pattern Recognition 

Once the trip chain info has been constructed, the travel pattern for each transit rider 

is further investigated through clustering the trip chains. As shown by the example in 

TABLE 1, an individual transit rider is likely to show a certain travel pattern during a multi-

day period. To retrieve these hidden and repeated travel patterns in an efficient manner, the 

density-based spatial clustering of application with noise (DBSCAN) algorithm was 

therefore adopted. Unlike most non-hierarchical clustering algorithms, the DBSCAN 

algorithm is not required to define the number of clusters (Ester et al., 1996) or identify 

arbitrarily shaped clusters because higher-density records are more likely to be grouped into 

a cluster. Two key parameters do, however, need to be defined in the DBSCAN algorithm: 

the ε distance and the minimum number of points (MinPts). The ε  distance defines the 

density-reachable range; if a sample record falls within the ε  distance, then this record will 
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be included into an existing cluster. MinPts limits the minimum number of records in each 

cluster; if the number of records in each final cluster is less than MinPts, then these records 

are marked as noise. If the records are close to each other (i.e. more dense), these records 

are more likely to be clustered by DBSCAN. An outlier is often distinct from other dense 

records, so DBSCAN is able to detect these outliers. 

A transit rider may begin their repeated trips in both the spatial and temporal 

domains and transit riders’ recurring boarding/alighting locations and times are considered 

simultaneously for clustering. In our application, a minimum of three records are required 

to form a cluster, and theε distance is set to one. Spatially, if the frequent boarding (or 

alighting) stops along the recurring routes are adjacent to each other, these stops may be 

considered as an identical origin (or destination). Therefore, an additional algorithm was 

used to detect the spatial relationship between multiple routes and applied in the process of 

DBSCAN clustering, as follows: 

Step 1: Randomly retrieve one record that is flagged as unvisited from the sorted 

trip chain database for an individual smart card. Flag this record as visited and form a 

cluster for this record.    

Step 2: Check the boarding time difference between unvisited records and the last 

visited record. If the difference is greater than one hour, repeat Step 1.   

Step 3: Check the spatial relationship between unvisited records and the last visited 
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record. If a spatial relationship exists (within 200 meters), then this record is included into 

the cluster formed in Step 1 and flagged as visited.    

Step 4: For each cluster, if the number of total records is less than 3, then these 

records in the cluster are flagged as noise; otherwise, the new cluster is confirmed.  

Step 5: Continue to process those unvisited records from Step1 through Step 4 until 

all the records are flagged as visited.   

Step 6: The number of total clusters is the number of typical trip chains per day. The 

recurring route, boarding/alighting stops and timings can be acquired by counting the most 

frequent pattern within each cluster.  

Take the trip chain data from Table 4-1 as an example. Based on the DBSCAN 

clustering algorithm, several patterns can be inferred: 

This transit rider regularly starts his/her first trip around 7:00 AM, and ends his/her 

last trip around 6:00PM.  

Recurring routes occur in most days of the week. Although the unusual travel 

pattern is detected on July 8th, it is flagged as a noise by the DBSCAN algorithm.  

As previously mentioned, transit riders may take different routes to the same 

location. The rider took another route, route 350, on July 6th; however, route 350 shares the 
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same stops with route 635. Therefore, two routes are considered as a “common” route, and 

the shared stops are grouped together.  

The routes and stops frequently visited by the same transit rider are demonstrated on 

a Geographic Information Systems (GIS) map as shown in Figure 4-3. The arrows show the 

weekday pattern the transit rider follows. It is very likely that this rider takes a home-to-

work trip in the morning and then returns to home from his/her workplace in the evening.    

 
 

Figure 4-3 Example of a Transit Rider’s Travel Pattern 

4.3 Regularity Clustering 

The historical travel pattern for a particular transit rider can be successfully 

extracted using the above procedure, but their individual travel pattern regularity is still 
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unknown. As explained earlier, in this context regularity means “how regularly the transit 

rider travels following the same pattern.” Identifying travel pattern regularity would help 

transit agencies evaluate the impacts of transit service provision and potential network 

changes, enabling them to conduct more effective marketing campaigns and measure transit 

performance (Foote et al., 2001). 

Clustering algorithms have been widely used to investigate customer loyalty in the 

retail and on-line shopping industries (Mauri, 2003; Cheng and Chen, 2009). The same 

principle can be applied to cluster transit riders with similar travel patterns and place them 

into different regularity levels based on their temporal and spatial characteristics. Several 

attributes in the trip chain data were therefore selected as features for clustering as follows:   

• Number of travel days 

The more days a transit rider travels, the more likely it is that he or she is a frequent transit 

rider.  

• Number of similar First Boarding Time 

Boarding time represents a rider’s temporal characteristics. If a rider begins his or her trip at 

a similar time of day every weekday, then this rider is more likely to be a regular transit 

rider.  

• Number of similar Route Sequence 
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Route sequence represents a general spatial pattern for a rider. The number of similar route 

sequences followed during the week may indicate a repetitive travel pattern.  

• Number of similar Stop ID Sequence  

The Stop ID sequence may contain detailed spatial similarity information. In many cases, 

two different Stop IDs might be spatially adjacent, which can be identified by GIS buffer 

processing.  

There may be a certain level of correlations between selected features, such as the 

numbers of similar Route Sequences and Stop ID sequences. However, these correlated 

features should not be eliminated since there are missing values within the Beijing transit 

smart card data and introducing a certain level of redundancy into the travel regularity 

clustering can help improve the algorithm accuracy. Redundant features (e.g. the number of 

similar stop IDs and the number of similar route sequences) can thus lead to more accurate 

clustering results.   

In order to efficiently and effectively cluster regularity, a suitable clustering 

algorithm needs to be chosen. The K-Means algorithm is one of the well-known clustering 

algorithms. This algorithm tries to partition n  records into k clusters by minimizing the 

within-cluster sum of squares. By continuously updating the mean of the record values, 

each observation is assigned into the cluster with the nearest center until no more 

observations can be assigned (Forgy, 1965). Although the K-Means algorithm can 
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demonstrate a very high performance and has been applied in many fields, the algorithm 

suffers from two major intrinsic disadvantages. First, the K-Means algorithm relies on the 

random initialization of the cluster center and the solution may fall into a local optimum 

instead of the global optimum as a result of the selection of starting points. If the starting 

points are far from the true centers of the clusters, the clustering result tends to be locally 

optimized. Second, the algorithm could require a super-polynomial run time in the worst 

scenario.    

K-Means++, which was proposed by Arthur and Vassilvitskii (2007), addresses the 

first of these issues by enhancing the initialization process of the traditional K-Means 

algorithm using a randomized seeding technique to guarantees the optimal solution is 

obtained. An additional benefit is that the computational complexity of the K-Means++ 

algorithm is only (log )O k , where k is the number of clusters. More details of the K-

Means++ algorithm can be found in Arthur and Vassilvitskii (2007).  

To equalize the magnitude and variability of the four input features, variable 

standardization is conducted before clustering. The range of each variable serves as the 

divisor to ensure each standardized variable falls between 0 and 1: 

( min( )) / (max( ) min( ))z v v v v= − −                                                                        (4-1) 

K-Means++ was therefore chosen to cluster transit riders with similar travel patterns, 

and each standardized variable can then be incorporated during the travel pattern clustering 
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process. 

Five clusters of regularity are used here: Very High (VH), High (H), Medium (M), 

Low (L), Very Low (VL). The cluster centers can be expressed as: 

1 11 12 13 14

2 21 22 23 24

5 51 52 53 54

( , , , )
( , , , )

( , , , )

c v v v v
c v v v v

c v v v v

=

=

=
                                                                                                (4-2) 

where ijv represents the j th feature of the generated attributes from trip chain data, 

and i  refers to the i th cluster.  

Then, the Euclidean distance between ic  and the zero point is calculated. This 

distance is defined as the cluster center distance: 

2 2 2 2
1 11 12 13 14

2 2 2 2
2 21 22 23 24

2 2 2 2
5 51 52 53 54

( 0) ( 0) ( 0) ( 0)

( 0) ( 0) ( 0) ( 0)

( 0) ( 0) ( 0) ( 0)

D v v v v

D v v v v

D v v v v

= − + − + − + −

= − + − + − + −

= − + − + − + −


                                                        (4-3) 

Next, iD is sorted in a descending order. Based on the order, each regularity level is 

assigned to a cluster. Finally, the corresponding regularity level for each transit rider can be 

determined by computing and comparing the minimum distance to the center of each cluster.   
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A preprocessing data cleansing procedure was adopted to eliminate those smart card 

records with wrong transaction times; for example, a few smart card transactions were 

recorded as “1900/01/01”. Applying the above data quality control procedure, 37,001 smart 

cards were randomly selected to test the proposed algorithm. 

The clustered results are summarized in Table 4-2. If regularity levels of Very High 

(VH) and High (H) are considered to represent regular transit riders, approximately 41% 

fall into this category. The clustered results can be used to categorize different transit rider 

groups for various transit fare options, and provide data support for transit market analyses. 

Table 4-2 Summary of Five Clusters 
 

Cluster Center 1C  2C  3C  4C  5C  

Regularity VL L M H VH 

Cluster Center Distance 1.28 5.17 10.42 13.52 19.99 

Number of Smart Cards 4809 10330 6483 9502 5877 

Percentage of total 13.0% 27.9% 17.5% 25.7% 15.9% 

Note: VL=Very Low; L=Low; M=Medium; H=High; VH=Very High  
 
 

Additional individual-level daily trip and travel time information is provided in 

Figure 4-4. Both average daily trips and average daily travel time for each passenger 

increased as the corresponding travel regularity became higher. On average, regular transit 

riders (high regularity and very high regularity) traveled more than twice per day. This is 

reasonable, because most regular riders take buses at some point during their daily 

commute.  
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(a)  

 
(b)  

 
Figure 4-4 (a) Individual-level Average Daily Travel Time for Each Cluster and (b) 
Individual-level Average Daily Trips for Each Cluster 
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4.4 Performance Enhancement using Rough Set Theory 

In Beijing, more than 16 million smart card transaction data points are generated 

every day. Processing and clustering such a huge amount of data is not an easy task due to 

the physical memory constraints of the currently available computer technology. Therefore, 

the K-Means++ algorithm may not be feasible for this situation without utilizing distributed 

computing (Cordeiro et al., 2011). To implement and execute the proposed approach in a 

regular personal computer, an algorithm based on the rough set theory was therefore applied 

to improve clustering performance. The rough set theory initially proposed by Pawlak 

(1982) is primarily used to classify vague and uncertain data to help expert systems learn 

from training datasets and generate meaningful rules for classification. Unlike other 

commonly used data mining algorithms, rough set-based algorithms do not need any prior 

information about the data, such as the membership function used in the Fuzzy theory, and 

the Bayesian prior probability in the Naïve Bayes classifier. Rough set-based algorithms 

can deal with both continuous and discrete input data, and perform well under 

circumstances where there is missing or incomplete information. This is because rough set 

theories depict missing attributes using lower and upper approximations for the incomplete 

data, defined by probabilities (Grzymala-Busse and Grzymala-Busse, 2007). Consequently, 

the rough set-based algorithm was deemed appropriate for dealing with the lack of boarding 

and alighting stop data for the flat-fare buses.  

  



www.manaraa.com

75 

 

The essence of the rough set-based algorithm is set approximation. Let us define any 

information system as the form: ( , { })U A dA = ∪ , where U means the non-empty set of 

objects, also known as universe, A denotes the condition attributes, and d denotes the 

decision attributes. In our cases, the number of travel days, the number of similar first 

boarding times, the number of similar route sequences and number of similar stop ID 

sequences are all condition attributes, and the rider’s regularity level is expressed as the 

decision attribute. The names of the condition attributes and the decision attributes are 

considered as the universe. The condition attributes and the decision attribute follow a 

many-to-one relationship. That is, different decision attributes could be sufficiently 

discerned using only a subset of condition attributes. Therefore, the goal of a rough set-

based algorithm is to determine the smallest number of condition attributes to represent the 

decision attribute. To depict the information uncertainty and vagueness, two important 

concepts are described as follows. Let B A⊆ and X U⊆  

{ | [ ] }BBX x x X= ⊆ is defined as the B-lower approximation of X. 

{ | [ ] }BBX x x X= ∩ ≠ ∅ is defined as the B-upper approximation of X. 

( )BBN X BX BX= − is defined as the B-boundary region of X. If the B-boundary 

region is not empty, then the set X is considered “rough”. (Komorowski, et al., 1999) 

Using the above three definitions, we can remove the superfluous attributes and 

achieve the equivalence classes with the minimum attributes (rules); however, finding the 
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minimum rules is a NP-hard problem and cannot be solved in a polynomial time (Skowron 

and Rauszer, 1992). Fortunately, many algorithms have been proposed for an optimal 

solution in an efficient fashion. Wróblewski (1998) developed a fast-rule induction 

algorithm based on a covering approach. His algorithm has demonstrated its capability in 

both efficiency and accuracy. Its computational complexity is only log( )mn n , where m is 

the number of universes and n is the number of attributes.   

This rule induction algorithm is used to generate minimum decision rules in our 

application. Decision results classified by the K-Means++ algorithm are served as training 

data (as shown in Table 4-3). Then, the rough set theory is applied to extract the hidden 

classification rules. Example rules are presented as follows: 

(1) (Number of the traveling days in (5.75;7.75) ) & (Number of the similar boarding time 

in (7.25;13.25) ) => (Regularity Level= High) 

(2) (Number of the traveling days in (17.0; Infinity))=> (Regularity Level= Very High) 

(3) (Number of the traveling days in (-Infinity;2.0))&(Number of the similar route sequence 

in (-Infinity;2.5))&(Number of the similar boarding time in (-Infinity;0.5))=> 

(Regularity Level= Very Low) 

The rules determined by the rough set theory can be used to classify each transit 

rider into different levels of travel pattern regularity. In addition, these rules can be easily 
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implemented and executed in the relational database, e.g. Structured Query Language (SQL) 

database.   

4.5 Comparison of Data Mining Algorithms  

The accuracy and efficiency of proposed rough set-based algorithm were compared 

with those of several prevailing classification algorithms commonly used in transportation 

engineering research. namely Naïve Bayes Classifier (Cestnik, 1990), C4.5 Decision Tree 

(Quinlan, 1993), K-Nearest Neighbor (KNN) (Cover and Hart, 1967) and Three-hidden-

layers Neural Network (Rumelhart and McClelland, 1986). The K-Means++ algorithm was 

adopted as the index algorithm for comparison, with 33% of the clustered transit riders 

serving as its training dataset. The rough set-based algorithm and the other four 

classification algorithms were applied in the training dataset to produce the corresponding 

classifiers. The total sample size was 37001. These classifiers were then used to process the 

remaining data, and the generated outputs compared to the clustered transit riders obtained 

using the K-Means++ algorithm to validate the accuracy of each algorithm. The entire 

dataset was randomly split into 33% training data and 67% test data and each algorithm 

executed for 10 iterations. All the algorithms were implemented in Java under an 

environment of a 6-core CPU and an 8 GB RAM desktop computer using the smart card 

data stored in Microsoft SQL server 2008. Table 4-5 summarizes both the accuracy and run 

time (the duration taken for an algorithm to execute) statistics of all algorithms.
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Table 4-3 Accuracy and Run Time Comparisons among Different Algorithms 
 

Iterations 
Rough Set C4.5 Naïve Bayes K-NN Neural Network 

Accuracy 
(%) 

Time 
(ms) 

Accuracy 
(%) 

Time 
(ms) Accuracy (%) Time 

(ms) Accuracy (%) Time 
(ms) Accuracy (%) Time 

(ms) 
1 98.86 59 99.31 116 87.98 64 98.57 802 97.54 120153 
2 99.01 54 99.77 119 86.34 66 99.13 798 98.12 119868 
3 99.23 69 99.60 123 87.03 65 98.96 793 96.88 123658 
4 98.92 64 99.13 118 86.99 70 99.08 826 97.65 130147 
5 98.65 59 99.00 127 85.55 68 98.97 757 98.11 121795 
6 99.19 53 98.98 133 86.78 71 99.39 788 97.96 116583 
7 99.25 60 99.13 130 87.22 69 99.12 809 97.93 130414 
8 98.97 51 99.86 121 89.53 69 98.30 825 98.21 125478 
9 99.42 56 99.75 109 88.11 65 99.35 786 97.98 123697 
10 99.26 63 99.33 111 88.02 72 99.44 779 98.14 130186 

Average 99.298 59.8 99.53 113.7 87.649 67.7 99.432 778.4 98.266 123640.5 
ms= millisecond 
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The results show that the proposed rough set-based algorithm clearly outperforms 

other algorithms in terms of efficiency. A t-test was conducted to evaluate the significance 

of accuracy the difference in accuracy between the proposed rough set-based algorithm and 

the other four algorithms. At a 95% confidence level, the proposed algorithm did not 

significantly differ from the K-NN algorithm but was 10 times faster. In addition, the 

proposed algorithm outperformed the Naïve Bayes and Neural Network in both algorithm 

accuracy and efficiency. Although the proposed algorithm slightly underperformed the C4.5 

decision tree algorithm in terms of accuracy, it was still twice as fast. As shown in Figure 4-

5(a), the rough set-based algorithm demonstrated its strength in efficiency as the size of the 

training dataset increased. Moreover, Figure 4-5(b) shows that the rough set-based 

algorithm would outperform the C4.5 decision tree algorithm in terms of accuracy once the 

size of the training dataset exceeded a certain threshold. This strongly suggests that the 

proposed rough-set-based algorithm is indeed suitable for handling large datasets of this 

type. 
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(a) 

 

 
(b) 

 
Figure 4-5 Performance Comparisons between the C4.5 and Rough Set-based 

Algorithms: (a) Efficiency comparison, and (b) Accuracy comparison 
 
 
 
 

4.6 Discussion 

This study opens up interesting new opportunities for leveraging smart card data to 

create a better understanding of transit riders’ behavior and thus potentially improve public 
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transit systems. Specifically, three major potential applications that could benefit from this 

study can be envisioned, as follows: 

• Travel behavior research  

In the past few decades, travel demand research has shifted from a trip-based travel 

approach to an activity-based travel paradigm. Activity-based travel models require a 

substantial amount of detailed behavioral information for each traveler extending over a 

relatively long period. Traditionally, this type of behavioral data has been collected using 

travel diaries and travel surveys, requiring an immense amount of resources to process and 

construct sequences of spatiotemporal activities for each traveler (Schlich and Axhausen, 

2003).      

The individual-level travel pattern mining algorithms developed for this study offer 

an alternative and novel approach for measuring the similarity and variability of transit 

riders through an examination of their multi-day smart card transactions. This will greatly 

facilitate travel behavior modeling development.  

• Transit market analysis   

As with other domains such as eGrocery shopping, transit agencies generally aim to 

develop a range of different market strategies to satisfy their passengers (Strathman et al., 

2008). One typical application of transit market analysis is market segmentation (Zhou et 

al., 2004). Market segmentation techniques divide the entire market into several distinct 
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segments consisting of groups of transit riders who share similar preferences and attitudes. 

Based on the transit rider groups identified here using the proposed travel regularity 

clustering algorithm, transit agencies can better allocate their limited resources to each 

segment to maintain and attract ridership. For example, various transit fare option can be 

provided that are specifically tailored for each group of transit riders. Key factors that 

influence transit ridership can also be identified by integrating each market segment with 

transit riders’ socio-demographic attributes (Krizek and El-Geneidy, 2007). For instance, 

most regular transit riders are commuters who do not own private cars and thus tend to be 

very sensitive to service reliability. In this case, improving transit service reliability (by, for 

example, shortening headway and providing real-time information) could be an effective 

measure to retain this group of transit riders.  

• Transit OD estimation  

Another potential use of the proposed travel pattern and travel regularity mining 

algorithms is to improve the accuracy of the transit OD estimation method. Each transit 

rider’s repetitive historical routes and stops can be used as prior information for passenger 

alighting stop inference.  

4.7 Conclusion 

This chapter proposes a series of efficient and effective data-mining approaches 

with which to model transit riders’ travel patterns using the smart card data of the type 
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collected in Beijing, China. The DBSCAN algorithm was utilized to successfully detect 

each transit rider’s historical travel pattern using the identified trip chains. The K-Means++ 

clustering algorithm and the rough set were then jointly applied to classify the travel pattern 

regularities. The performance of the resulting rough-set-based algorithm was compared 

with four other classification algorithms: the Naïve Bayes Classifier, C4.5 Decision Tree, 

K-Nearest Neighbor (KNN) and three-hidden-layers Neural Network. The results indicated 

that the proposed rough-set-based algorithm outperformed all the other data mining 

algorithms in terms of accuracy and efficiency.  

The contribution of this study is two-fold: First, a data mining approach has been 

proposed that is capable of identifying travel patterns for individual transit riders using a 

large smart card dataset. The second contribution is that the regularity levels for the data 

can also be successfully classified by the approach proposed here. The travel patterns and 

regularity levels of their customers are important information for transportation researchers 

seeking to understand day-to-day urban travel behavior variability and facilitate activity-

based travel demand model development.  

Individual travel patterns and pattern regularity also offer substantial benefits for 

transit agencies working to improve their transit service with the assistance of transit 

market analysis. Another potential application of this research is to estimate an individual 

transit rider’s origin and destination using that rider’s historical travel pattern. In terms of 

future work, the proposed method must now be compared with other traditional travel 

behavior data collection methods, such as survey studies, focus group discussions and travel 
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diaries, in order to improve the algorithm accuracy. It would also be interesting to integrate 

the passenger travel pattern information obtained through this study with map-based 

transportation systems (Ma et al., 2011) to monitor and visualize transit performance.  
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Chapter 5 Transit Passenger Destination 

Estimation 

For Beijing’s flat-fare based AFC system, transit riders are not required to tap their 

smart card during checking out, and consequently, the alighting stop for each transit rider is 

missing. Therefore, it is of critical need to estimate the alighting stop for each SC 

transaction. In this chapter, the alighting stop for each transit smart card holder will be 

inferred. Three major analytical methods are adopted: (1) spatiotemporal transfer activity 

identification (2) daily trip chain analysis (3) historical travel pattern integration. Smart 

card transactions from distance-based fare buses with both boarding stop and alighting stop 

information will be used to validate the proposed alighting stop inference algorithm.  

5.1 Methodology 

5.1.1 Spatiotemporal Transfer Activity Identification 

Based on the previous chapter, the passenger boarding stop for those flat fare buses 

can be either estimated by integrating with GPS data or by applying the Bayesian decision 

tree algorithm. Transfer activities between various bus lines and subway lines are quite 

common in Beijing transit networks. This passenger transfer information can be utilized for 

passenger alighting stop estimation with the following assumption: the passenger alighting 

stop of the current trip is spatially and temporally adjacent to the boarding stop of the next 
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trip.  To be specific, there are three types of transfer activities for the flat-fare based route: 

(1) A transit passenger can transfer from a flat-fare route to a subway line. 

(2) A transit passenger can transfer from a flat-fare route to a distance-based fare 

route. 

(3) A transit passenger can transfer from a flat-fare route to another flat-fare fare 

route. 

For scenario (1), passengers are required to tap their smart cards on the card reader 

when they enter and exit through the gateway. Both boarding and alighting information 

(location and time) are stored by the card reader. For scenario (2), two smart card readers 

are installed besides the front and rear doors of distance-based fare buses, and they can 

record each passenger’s boarding stop and alighting stop respectively, however, the 

boarding time information is not able to be stored when each passenger gets on the bus. 

Fortunately, other passengers’ alighting time can be a good substitute of the missing 

boarding time since the time difference between alighting activity and boarding activity is 

marginal. For scenarios (3), the boarding time for each flat-based route is accurately 

captured by the smart card reader, and most of passengers’ boarding stops can be inferred 

within an acceptable range of error using data mining and data fusion approaches.  

To connect two distinct transit routes as a linked trip for a passenger, one 

assumption is that the passenger should board the next route within 60 minutes after 
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boarding the next route for transferring purpose. The 60-minute threshold is based on the 

result from 2010 Beijing transport survey (Beijing Transportation Research Center, 2012), 

where the average transit trip time (in-vehicle time and waiting time) per passenger is 65.4 

minutes. In addition, the boarding stop from the current route should be within a 200-meter 

vicinity of the alighting stop from the previous route when a passenger transfers between 

these two routes. A passenger tends to choose the stop within minimum walking distance, 

and therefore this stop will be the most probable alighting stop for this passenger.    

5.1.2 Daily Trip Chain Analysis 

The above transfer activity analysis can estimate most passengers’ alighting stops 

for flat-fare routes. There are a certain amount of smart card transactions without any 

associated transfer activities such as the last transaction of a particular day.  One assumption 

can be made for alighting stop inference: passengers will return to his/her first boarding 

stop at the end of a day, and this first boarding stop should be the origin of his/her first trip 

of the same day. This assumption can be better illustrated by figure 5-1. The passenger 

started his/her first trip from the origin (blue stop), and transferred from the green stop to 

the destination i (squared stop) along the second route. At the end of the day, this passenger 

took the returning route and alighted at stop k (squared stop) in the vicinity of his/her origin 

(blue stop). As shown in figure 5-1, the last trip of the passenger is likely a trip from work 

to home. In this case, alighting stop k in the second route can be estimated using the origin 

(blue stop) of the returning route. Similarly, the first trip is a home to work trip, and thus, 

the alighting stop i can be substituted by the origin (blue stop) of the first route. It is worth 
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noting that it is not necessary for a passenger taking the identical route for commuting, and 

this is to say, each passenger could have several different transit routes from his/her home 

to his/her workplace. Therefore, further spatial analysis should be conducted to justify 

whether two different routes share several geospatially similar stops.  

First route

Second route

Historical 
route

Returning 
route

Estimated destination Origin 
stop

Transfer 
Stop

Historical 
Stops

i

j

k

 

Figure 5-1 Alighting Stop Inference Algorithm Example 

 

5.1.3 Historical Travel Pattern Integration  

In our study, multi-day smart card transactions for each particular transit rider are 

also taken into account for passenger destination estimation. Using the historical individual 
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level travel pattern, we are able to infer the most probable destination for the same transit 

rider on a different day. The underlying assumption is that the transit rider with high travel 

regularity is likely to follow his/her historical travel pattern to repeat his/her future trips. If 

a transit rider’s historical travel pattern has been successfully detected using 

aforementioned data mining approach, and this transit rider’s travel regularity is 

simultaneously classified as “high”, then the missing alighting stop of the current trip for 

this transit rider can be substituted by the known historical alighting stop. The dashed line 

in Figure 5-1 represents the historical route for the transit rider identified from multi-day 

smart card transactions data, and this route is a distance-based fare route with both known 

boarding and alighting stops. In addition, the most frequent stop ID sequence can be also 

identified using the DBSCAN clustering algorithm in Chapter 4. Assuming this regular 

passenger continued to follow his/her previous routes as the current travel pattern, the most 

spatially nearest stop to the historical alighting stop (orange stop) can be identified as the 

alighting stop along the first route.  

Based on the above three primary approaches, the fundamental flow chart to infer 

individual passenger’s alighting stops can be drawn as follows: 
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Figure 5-2 Transit Passenger Destination Estimation Flow Chart 
 

5.2 Validation  

Alighting stop information is absent for flat-fare routes, however distance-based 

fare routes contain both alighting and boarding stop locations. These known alighting stop 

are considered as “ground-truth” data, and will be compared with the inferred alighting 

stops using the proposed destination estimation algorithm for validation purposes. Two 
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distance-based fare routes (route 753 and route 967) were selected. A total of 27343 distinct 

smart cards were extracted from route 753 on July, 5th, 2011. In addition, one-weekday 

(June, 27th, 2011 to July, 1st, 2011) smart card transactions from the 27343 smart card 

holders were collected to generate each passenger’s typical travel pattern and travel 

regularity. Based on the travel pattern and travel regularity data mining approach discussed 

in Chapter 4, the statistics for travel regularity were generated and the results are 

summarized in Table 5-1: 

Table 5-1 Statistics of Travel Regularity for Route 753 on July, 5th, 2011 
 
 

Number of Smart Cards Percentage of Total Regularity Level 
5571 20.4% VL 
7848 28.7% L 
6750 24.7% M 
3202 11.7% H 
3972 14.5% VH 

 
 

The inferred individual travel pattern information is then incorporated into 

passenger destination estimation algorithm. The total sample size of smart card transactions 

is 34790. The results are shown in Table 5-2 and Figure 5-3: 

Table 5-2 Results of Alighting Stop Estimation Algorithm for Route 753  
 

Route 753 
Number 

of 
records 

Accumulated 
percentage in 

inferred records 

Accumulated 
percentage in total 

records 

Stop ID error<1 23564 86.2% 67.7% 

Stop ID error<2 24958 91.3% 72.7% 
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Stop ID error<3 25696 94.0% 73.9% 

Stop ID error<4 26024 95.2% 74.8% 

Total 27337 N/A 78.6% 

 
 

Figure 5-3 Alighting Stop Estimation Algorithm Accuracy for Route 753 
 

 

Alighting stops for 78.6% of the smart card transactions can be estimated by the 

proposed algorithm. Among these inferred stops, 86.2% of them match with the actual 

alighting stops, and more than 95% stops fall within three-stop distance away from the 

actual alighting stops.  

Similarly, a total of 28160 smart card transactions from route 967 on July, 5th, 2011 

were also tested. 81.8% of the total alighting stops can be successfully estimated, which 

contain 88.1% perfectly matched records, and more than 96% records whose error ranges 

are within three stops. The tested result is displayed in Table 5-3 and Figure 5-4. 
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Table 5-3 Results of Alighting Stop Estimation Algorithm for Route 967 
 

Route 967 
Number 

of 
records 

Accumulated 
percentage in 

inferred records 

Accumulated 
percentage in total 

records 

Stop ID error<1 20291 88.1% 72.1% 

Stop ID error<2 21788 94.6% 77.4% 

Stop ID error<3 22110 96.0% 78.5% 

Stop ID error<4 22202 96.4% 78.8% 

Total 23032 N/A 81.8% 
 
 
 
 

Figure 5-4 Alighting Stop Estimation Algorithm Accuracy for Route 967 
 
 

 
 
 

The alighting stop accuracy of route 967 is slightly higher than the one of route 753. 

This is probably due to the characteristics of transit riders. Table 5-4 summarizes the travel 

regularity in route 967. If a passenger is classified as high or very high travel regularity, 

then this passenger is considered as a regular transit rider. More than 43% passengers from 
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route 967 are categorized as regular riders, while there are 26% passengers from route 753 

as regular transit riders.   

Table 5-4 Statistics of Travel Regularity for Route 967 on July, 5th, 2011 
 
 

Number of Smart Cards Percentage of Total Regularity Level 
4101 17.8% VL 
4903 21.3% L 
4010 17.4% M 
6458 28.0% H 
3569 15.4% VH 

This is not surprising. As shown in Figure 5-5, red line represents route 967, and 

blue line represents route 753. Route 967 goes through the university area (black circle 

area), where a variety of universities are located. The passengers in route 967 are likely 

composed of college students. They are probably frequent transit riders for commuting to 

universities, and this leads to a higher percentage of regular transit riders than another route 

753. Therefore, higher alighting stop estimation accuracy can be achieved for route 967.   



www.manaraa.com

95 

 

 

Figure 5-5 Route 967 and Route 753 Spatial Distribution 
 

Both the passenger origin inference algorithm and destination estimation algorithm 

were implemented in Microsoft Visual C# as displayed in Figure 5-5, and the inferred OD 

data were stored in Microsoft SQL server 2008.    
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Figure 5-6 Beijing Transit Origin and Destination Estimation Software 
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Chapter 6 Transit Performance Monitoring 

and Visualization 

Two research hot spots are identified and should be address in this section: (1) 

Develop a series of effective performance indicators to better quantify the public transit 

performance using the individual-level passenger OD and trip information; (2) Develop a 

robust and efficient visualization platform to convey the transit performance measures to 

both transit agencies and transit riders. To achieve these goals, several key transit 

performance indicators are firstly introduced, and the concept of eScience is then further 

elaborated with a prototype system named as DRIVE Net. DRIVE Net system can be 

leveraged to calculate and present the performance of transit system based on massive 

smart card data on different scales. This leads to the development of TransitNet, an E-

science based platform to quantify and visualize transit performance measures in a large-

scale network. The architecture of TransitNet system will be detailed in the second part of 

this chapter.  

6.1 Transit Performance Measures 

In this study, several transit performance indicators are proposed depending on 

different levels of analytical scopes. The definitions of transit performance measures follow 

a hierarchical structure from a network-level speed map to a stop-level headway analysis.  

Each level of transit performance indicators is articulated in the following content. 



www.manaraa.com

98 

 

6.1.1  Network-level Transit Speed  

Network-wide transit travel speed is of particular interest for transit agencies and 

travelers. Using the real-time transit travel speed data, transit path finding algorithm based 

on the minimum travel time can be readily implemented for transit rider’s trip planning. 

Moreover, transit agencies are also able to identify congestion bottlenecks by observing 

those low-speed routes, and examining how congestion propagates through the transit 

network. Consequently, corresponding countermeasures (e.g. transit routing optimization) 

can be further adopted by transit agencies to alleviate the congestions. However, transit 

speed cannot be directly measured using the prevailing inductive loop detectors. Especially 

considering the passenger boarding and alighting activity at a particular bus stop, estimating 

transit speed may require external data to accomplish. Smart card transaction data contain 

both temporal information (transaction time) and spatial information (bus route and inferred 

OD information), and can be used to estimate the travel time between stops. The travel time 

between two adjacent stops includes both running time and dwell time (Vuchic, 2005). 

Dwell time is the duration of a bus standing at a stop for the purpose of boarding and 

alighting passengers, and is highly related to the number of waiting passengers. Actual 

transit speed calculation should consider both general traffic condition and passenger dwell 

activity (Vuchic, 2005), and then, the stop-to-stop average speed will be calculated by using 

the network distance between adjacent stops divided by the stop-to-stop travel time. In the 

Beijing transit system, passengers are required to simultaneously board a bus through the 

front door, and get off the bus through the rear door. In this case, the stop-to-stop travel time 

can be approximately measured as the first passenger’s boarding time difference between 
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stop i and stop j.  

Transit speed calculations can be undertaken for both flat-fare buses and distance-

based fare buses in the entire transit network. Potential applications of the network-wide 

transit speed include dynamic routing for transit drivers, transit network optimization for 

transit agencies, and transit congestion diagnosis for transportation researchers.  

6.1.2  Route-level Transit Travel Time Reliability  

Travel time reliability represents the consistency of travel time of a repeated trip, 

and is more important than average travel times since travelers tend to remember 

unexpected delays (Lyman and Bertini, 2008). Providing travel time reliability information 

can help traveler to better manage their time and reduce traffic congestion. This is 

particularly true in public transportation. Transit travel time reliability influences transit 

service attractiveness and efficiency, and relates to on-time performance and headway 

deviation for customer satisfaction issues (Kittelson&Associates, 2003). Transit agencies 

are actively seeking solutions to retain their current ridership and attract more transit riders 

by mitigating the unexpected delay by for example, applying bus-only lanes. From the 

perspective of a passenger, passenger travel time is composed of both in-vehicle travel time 

and waiting time (Vuchic, 2005). Route-level transit travel time reliability indicators can be 

used to measure the variance of in-vehicle travel time. There are a variety of effective 

methods to quantify travel time reliability recommended by the Federal Highway 

Administration (FHWA, 2006): 
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• 90th or 95th percentile travel time  

This indicator depicts the travel time during the heaviest traffic conditions.  

• Buffer index  

Buffer index measures the extra time a traveler needs to spend in addition to his/her 

average travel time to ensure on-time arrival for 95% percent of the trips. The extra time 

can be defined as the time difference between 95th percentile travel time and average travel 

time, and Buffer time is then calculated as the ratio of the extra time and average travel time.   

• Planning time index 

Planning time index can be calculated as the 95th percentile travel time divided by 

free-flow travel time. Different from the buffer index, the planning time index represents 

the necessary total time to ensure on-time arrivals for 95% percent of the trips.  

In this study, 95% travel time and buffer index are adopted to measure the transit 

travel time for a particular route. In addition, the segment-level travel time reliability 

indicator of each transit route is also calculated for the further evaluation.   

6.1.3  Stop-level Ridership and Headway Variance  

Ridership  
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Stop-level ridership refers to the number of boarding or alighting passengers at each 

stop along a route. Ridership plays a significant role in monitoring transit service and 

accessing financial gain for transit agencies. Transit operators can use stop-level ridership 

to identify popular stops with a high number of boarding passengers, and correspondingly 

adjust transit schedules to achieve better service quality. Decision makers in transit agencies 

can evaluate the effectiveness of new fare policies and how transit ridership responds to the 

fare changes.  

The total number of alighting and boarding passengers determines the demand for 

each route and can potentially impact transit agencies’ marketing and operational strategies. 

For example, if a particular route is found to be heavily utilized, then, increasing the 

number of daily transit vehicles or shortening the headway could better accommodate more 

transit riders. 

Headway Variance  

 Headway is a key factor to measure transit service reliability, and is defined as the 

time difference between two consecutive buses at arriving at a particular stop for the same 

route (Liao and Liu, 2010). Neither too long headway nor short headway is desired by 

transit agencies and passengers. Too short headway may result in the bus bunching. In this 

situation, if one bus arrives at a particular stop late due to traffic congestion, the following 

bus will likely arrives at the same stop after a short time period as well. Consequently, the 

first bus is full of passengers, while the second bus is almost empty. This leads to inefficient 
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transit usage, and thus should be avoided by transit agencies. Similarly, long headway can 

incur long waiting time for passengers. As demonstrated by Mohring et al. (1987), 

passengers value waiting time two to three times more important than in-vehicle travel time. 

Irregular headway may reduce the attractiveness of public transit. It is worth noting that the 

headways at different stops may fluctuate due to traffic signals and variable quantities of 

boarding passengers. Therefore, it is necessary to conduct a stop-level headway analysis for 

a transit scheduler to adjust the headways in the middle of the route. 

Smart card data can assist better assessing the headways. In this study, the stop-level 

headway can be calculated as the time difference of the first passenger’s boarding times for 

the two consecutive buses, and presented as a histogram for visualization purposes.  

6.2 Digital Roadway Interactive Visualization and 

Evaluation Network (DRIVE Net) 

Developing the aforementioned transit performance indicators requires interacting 

with transit network elements (i.e. stops and routes). A transit network can be considered as 

a dynamic transportation network with spatial and temporal transit features (Huang and 

Peng, 2008). Because of the complexity in transit network, integrating roadway geometric 

attributes with transit operational data becomes challenging. According to Transit 

Cooperative Research Program’s report (Furth et al, 2006), transit agencies is of particular 

interest to conduct route-independent demand and service reliability analyses. However, 

achieving such a goal is not a straightforward task, which requires a comprehensive GIS 
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model and sufficient computing power to link transit stops and segments, and integrate the 

transit-related passive data (i.e. smart cart data and GPS data).  

The advancements of information technology and mobile application have 

revolutionized the way of information gathering and dissemination, and a large amount of 

location-aware data is becoming affordable and ubiquitous. This is especially true in public 

transportation. There is a strong need to develop a robust web-based platform to increase 

the exchangeability and usability of intensive transit data. To overcome the shortcomings of 

traditional static GIS applications for transportation, a web-based E-Science framework has 

been proposed. This framework is named as DRIVE Net, and the following contents focus 

on the detailed information of this system.  

6.2.1  Motivation  

Over the past decades, transportation research has been mathematical-equation 

driven and relied on scarce data to develop mathematical models and traffic theory (e.g., 

Chiu and Mirchandani, 2008, Murray-Tuite and Mahmassani, 2005). For example, many 

well-known theoretical models were developed based on a small portion of data but they 

have been widely used in practice (May, 1990; Pipes, 1967). When the model development 

is extended to the network level, data availability may reduce further or simply disappear 

and these theoretical models can often be verified only by simulation data (e.g., Smith el al., 

2008; Haghani et al., 2008). Options did not seem to exist although researchers knew that 

the simulation and mathematical models only can capture some of the “facts,” many 
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contributors, especially human factors, are not easily reflected in the simulation results. 

With the advance of data collection technologies and their deployments in 

Intelligent Transportation Systems (ITS), transportation data availability has been 

increasing tremendously over the past years. As a future type of traffic management system, 

IntelliDriveTM (http://www.intellidriveusa.org/) is also quickly gaining in popularity and 

increasingly deployed. Since IntelliDriveTM enables vehicle to vehicle and vehicle to 

infrastructure communications on a frequent basis, traffic data are expected to explode in 

the years to come. Therefore, data-driven or data-based research shall expand and play an 

increasingly important role in the near future. The rich data sets will enable validation of 

previously developed transportation theories and boost scientific discoveries on 

transportation planning, system operations, and travel behaviors. 

Most of the previous web-based Archived Data User Services (ADUS) systems and 

Advanced Traveler Information Systems (ATIS) are primarily based on a single data source 

and serves as a traditional online data or online traffic information provider. Despite of the 

needs from various transportation-related agencies for online systems to share and analyze 

transportation relevant data, few such systems were developed with the functions of data 

format standardization, regional map-based data visualization, and interactive online traffic 

analysis, with consideration of the interactions between heterogeneous data. For example, 

the impacts of freeway incidents on arterials and freeways were not covered in previous 

research due to the lack of an explicit architecture to bridge the gaps between 

heterogeneous data from multiple transportation agencies. 

http://www.intellidriveusa.org/
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The goal of this study is to develop an e-science of transportation platform for data 

sharing, visualization, modeling, and analysis. The term “e-Science” was created by Dr. 

John Taylor of the UK Office of Science and Technology in 1999 (Hey and Trefethen, 

2002). E-science refers to computationally intensive science that needs to process immense 

data sets using highly distributed computational resources connected by the Internet. E-

science approaches have a great potential to solve some tough transportation issues. 

However, it has been a slow process for the transportation communities to accept this new 

concept. The new platform intends to take advantage of e-science developments for data-

driven transportation research and applications. 

The new platform is named Digital Roadway Interactive Visualization and 

Evaluation Network (DRIVE Net). DRIVE Net is expected to remove data accessibility 

barriers, allow easy access of real-time regional traffic information, facilitate data sharing 

and visualization, enable online data analysis for scientific discovery and decision support, 

and offer opportunities for early stage e-science of transportation investigations. This 

platform will benefit not only regular road users but also transportation practitioners and 

researchers. Compared with previous systems, DRIVE Net is not a simple data visualization 

and archiving system. DRIVE Net not only enables the connections and interoperability 

among the heterogeneous data sets but also serves as a data-rich visual platform to facilitate 

scientific discoveries and educational enrichments in the areas of transportation engineering 

and planning, environmental engineering, and public health science. The design for DRIVE 

Net clearly considered the need to support future endeavors in e-science of transportation. 
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6.2.2  System Architecture  

The design of DRIVE Net is critical for its future performance and scalability. The 

current design shown in Figure 6-1 reflects our current understanding of the platform and 

future expectations to DRIVE Net. We intend to make it open architecture and open source 

so that system design can be continuously improved with expansion of system capabilities. 

The current system architecture is primarily composed of three parts: heterogeneous data 

sources from different agencies, data warehouse in the STAR Lab, and web services 

running on the DRIVE Net system server. 

Data Warehousing and Retrieval 

The data warehouse is responsible for data archiving with multiple data retrieval 

functions supported by the DRIVE Net system. Data retrieval is challenging because every 

agency has its internal policy and security concerns. Relying on one single uniform data 

retrieval method for each agency may be infeasible and inapplicable. Moreover, data 

archiving formats in all agencies vary, even within the same agency; data may still follow 

different patterns. Standardization of data formats is highly beneficial for transportation 

agencies and data users. However, few guidelines have been developed for data exchange 

and standardization. Some standards, e.g. National Transportation Communications for ITS 

Protocol (NTCIP) (NCTIP, 1998), only focus on data communication standardization, not 

the data exchange and storage formats. Hence, four data retrieval methods are proposed and 

currently used for data retrieval in DRIVE Net. These methods and data examples are listed 

as follows:  
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1) Traditional flat file exchange: Flat files are the most common data exchange 

format commonly used among all agencies. In this way, data quantity, property and privacy 

can be carefully controlled. However, this method is also less efficient and more time-

consuming. Once these files are retrieved through the physical media, e.g. CD-ROM, or e-

mails, these files can be uploaded into the database through the DRIVE Net website or 

using the Structured Query Language (SQL) import function. Below are two examples of 

data obtained through flat file exchange: 

•  Washington Incident Tracking System (WITS): Most incidents happening in 

Washington major freeways and state highways are logged in the WITS database in 

Washington State Department of Transportation (WSDOT). The WITS datasets are 

disseminated in flat files (EXCEL) and imported into the DRIVE Net incident database. 

Detailed incident information, such as incident geospatial location, notification time, 

clearance time, is stored in the incident database.  

•  Highway Safety Information System (HSIS) (Council and Mohamedshah, 

2009): Upon users’ request, the HSIS provides different types of data for Washington State 

highways, including the accident, roadway inventory, traffic volume, curve and grade and 

interchange/ramp data. The data are stored in the DRIVE Net accident database.   

2) Passive data retrieval: DRIVE Net is equipped with customized C# or Java 

computer programs that are scheduled to fetch the remote data in a predefined interval via 
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File Transfer Protocol (FTP), Hypertext Transfer Protocol (HTTP) or Simple Object Access 

Protocol (SOAP). This method is considered the most convenient and efficient way to 

periodically retrieve data from remote servers. The data can be imported into the database 

following the schema design by the research team at the Smart Transportation Applications 

and Research Laboratory (STAR Lab) of the University of Washington (UW). Examples:  

•  Freeway loop sensor data: The Washington State Department of 

Transportation (WSDOT) operates more than 7000 Inductive Loop Detectors (ILD) along 

freeways in Washington State (Wang et al., 2009). WSDOT shares its 20-second aggregated 

single loop data via an FTP website. The data are automatically fetched by the data 

download module every 20 seconds and stored in the DRIVE Net freeway database.  

•  Arterial data: The City of Bellevue, WA has more than 500 advance loop 

detectors at more than 177 signalized intersections (Wu et al., 2009; Wu et al., 2007). The 

controllers at these intersections send the cycle-by-cycle real-time traffic data (e.g. volume, 

occupancy and timing plans) back to a FTP server in City’s Traffic Monitoring Center 

(TMC) and stored as Comma-Separated-Value (CSV) file every minute. DRIVE Net has 

been fetching the CSV file and importing the data into the DRIVE Net arterial database 

since 2007.  

•  Trucking Data: Global Positioning Systems (GPS) used by trucking 

companies are a source of truck probe data for freight performance measurement. WSDOT, 

UW and the Washington Trucking Associations (WTA) have partnered to collect and 



www.manaraa.com

109 

 

analyze GPS truck data from commercial in-vehicle fleet management systems used in the 

central Puget Sound region (Ma et al., 2011). Data are being collected from three vendors, 

with various resolutions, ranging from one to 15 minute frequency. DRIVE Net 

automatically fetches and imports theses data into DRIVE Net truck database via FTP.  

3) Active data retrieval: Some agencies may have internet security concern and 

limited public access. The STAR Lab provides a satellite server with hardware, software, 

and data processing tools pre-installed. Using a build-in custom service program in the 

satellite server, the data can be securely “pushed” back through a firewall to the STAR Lab 

data warehouse using Open Database Connectivity (ODBC). This is more expensive but 

more secure solution to transmitting the data. Example: 

• Intersection detector event data: Second-by-second event data are collected 

from all video sensors at the intersection at 196th Street and SR99 in the City of Lynnwood, 

WA. The data are stored in the STAR Lab satellite server and concurrently pushed through 

firewalls to the DRIVE Net Intersection Performance database.  

4) Direct data archiving: The data can be collected directly from the data 

collection devices. The data can be sent directly and periodically to the data warehouse 

from the test site. Example: 

• Route travel time data: Bluetooth-based travel time detectors developed by 

the STAR Lab can effectively collect route travel times by matching the unique Median 
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Access Control (MAC) address at various locations (Malinovskiy et al., 2011). This device 

is able to transfer data using General Packet Radio Service (GPRS) and Global System for 

Mobile Communications (GSM) communication protocols in real time. The data are sent 

directly back to the DRIVE Net Bluetooth travel time database every five minutes.  

For the databases mentioned above, the schemas have been designed in advance to 

ensure data management and query efficiencies. The relational data model (Codd, 1970) is 

used in the design. All kinds of transportation data can be systematically stored in the 

DBMS and the relationships between the attributes (columns) can be easily maintained 

following the designed schema. 

DRIVE Net Web Server 

The core DRIVE Net system lies in the web server running Apache Tomcat 6.0 in 

the Windows Server 2008 Operating System (OS) environment. This server can 

render/disseminate the data and execute analytical algorithms depending on the role of 

users. Traffic engineers, researchers and travelers are three users groups expected to use 

DRIVE Net. For example, certain downloading functions are limited to certain user groups. 

As illustrated in Figure 6-1, DRIVE Net can be connected to multiple data servers using 

different data communication techniques. When necessary, another server can be added to 

the system as well. DRIVE Net servers will work jointly like terminals in the grid 

computing infrastructure.   
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Figure 6-1DRIVE Net System Architecture 

6.2.3  System Design  

The DRIVE Net system is developed based on a multitier architecture model, 

commonly used in software engineering (Ran et al., 1999; Eckerson et al., 1995). The major 

merit of the multitier architecture is that the developers can modify or add a specific tier 

without rewriting the entire application. The model being used consists of a client-side 

presentation tier (client side web browser), a server-side data tier (data warehouse), and two 

server-side logic tiers (middleware and computational module). In addition to the traditional 

three-tier client-server model, an additional logic tier is added to handle data quality issues. 

The computational tier is used for data sharing control and algorithm execution. The 

middleware tier is designed to mitigate the burden in the computational tier. The burden is 
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usually caused by excessive access to database, analytical algorithm calculations, and data 

quality control. The presentation tier is on the client side web browsers, and used for 

displaying interfaces and visualizing outputs, and receiving inputs from users. The overall 

system flow chart is shown in Figure 6-2: 
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Figure 6-2 DRIVE Net System Flow Chart 
 
Data Quality Control  

Data quality is an issue that is widely recognized by transportation researchers and 

agencies. Developing an automatic and robust data quality control (DQC) procedure is 
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beneficial to facilitate transportation-related research. To insure the quality data, DRIVE 

Net incorporates a two-step DQC mechanism handling data cleansing tasks, including error 

detection, removal and inconsistencies, etc. (Rahm and Do, 2000). The first step of data 

cleansing service happens at the stage of data retrieval from different data sources. For 

example, erroneous data are either flagged or removed. Examples of erroneous data include 

zero occupancy and negative volume in the loop detector data, and offset GPS data in the 

freight database. Further data cleansing (i.e. second step data cleansing) is handled in the 

DQC module in the middleware tier. In addition to error checking, DQC in the middleware 

tier mainly conducts preliminary data analysis and processing to reduce the computational 

burden in the computational tier. For example, the advance loop detectors at Bellevue’s 

intersections are wired together, resulting in undercount problems. A probability-based 

nonlinear model developed by (Wu et al., 2010) is incorporated into the second DQC 

module to correct the undercounted volume. Freeway ILD data suffers from both 

misdetections and erroneous occupancy issues due to incorrect sensitivity level settings in 

loop cards (Cheevarunothai et al., 2006). A software-based error detection and correction 

algorithm (Wang et al., 2009) is also implemented in the middleware tier. Another example 

is the Origin-Destination (OD) identification algorithm developed by (Ma et al., 2011), 

which incorporated and extracted individual truck OD information for freight performance 

measurement. Similarly, the raw Bluetooth MAC addresses collected by the Bluetooth 

detectors are sent back to DRIVE Net. The redundant data were screened at the first DQC 

module and the travel time calculations are also undertaken in the 2nd DQC module of the 

middleware tier.   
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Middleware Tier 

Middleware is a computer program independently running in the server. As 

mentioned, the purpose of building a middleware tier is to leverage computational power, 

manage resources between the server (data and two logic tiers) and the client (presentation 

tier). In addition to the DQC module mentioned earlier, the data connection module is also 

developed in the middleware tier. In fact, this module is a program interface to connect with 

multiple databases using Java Database Connectivity (JDBC) API, allowing the middleware 

tier to query and receive the results from the data warehouse for further process.  

Computational Tier  

The computational tier in the DRIVE Net server handles complex algorithm 

implementation after DQC is complete. In addition, this tier assists in archiving raw data 

and data sharing service control. The Asynchronous JavaScript and XML (AJAX) (Garrett, 

2010) technology is implemented to reduce the data transfer between the server and the 

browser and minimize interference to the display and ongoing activities on the existing 

page. This design reduces the server’s response time and enhances the system performance 

for displaying dynamic and interactive web pages (Garrett, 2010).  

Multiple algorithms implemented in DRIVE Net use this AJAX technology. These 

algorithms include a iterative time-dependent A* algorithm performing the shortest travel 

time routing (Wu et al., 2011), statistical metrics generation for freight performance 

measures (Ma et al., 2011) and incident induced delay calculation using deterministic queue 

theory and time series techniques (Yu et al., 2011).  
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Presentation Tier  

The primary functionality of the client side is to provide an interactive Graphic User 

Interface (GUI). As shown in Figure 6-2, the users’ inputs are sent to the computational tier. 

The computed results are then sent back to the web browser through the Remote Procedure 

Call (RPC). The final results are visualized through Google Map API (Google, 2010) and 

Visualization API (Google, 2010), two major third party components supported by the 

Google cloud. The Google Maps API allows developers to visualize the results on Google 

Maps through Google Maps services. The Google Visualization API allows users to interact 

with the data visualized in the statistical charts, such as histograms and pie charts, through 

visualization tolls services.   

Implementation 

A combination of the Google Web Toolkit (GWT) (Google, 2010) and Eclipse 

(Eclipse, 2010), an open source Integrated development environment (IDE), creates a 

strong development environment for DRIVE Net. GWT contains Java API libraries, 

allowing developers to code web applications in Java language and then compile the source 

code into JavaScript. In this case, development cost and time are significantly reduced 

compared with traditional web development methods, such as JavaScript and/plus PHP. In 

addition, debugging in GWT makes traditional JavaScript web development much 

convenient. A developer is able to access existing widget templates in the GWT library to 

design web interfaces, and a Java to JavaScript compiler translates and optimizes Java code 

into JavaScript.  The prototype DRIVE Net system can be accessed online at 

http://www.uwdrive.net/. The web interface of DRIVE Net (Version 2) is shown in Figure 

http://www.uwdrive.net/
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6-3. All computational functions are located on the left side of the panel, including total 

eight modules programmed on an objected-oriented basis. Hence, all the classes can be 

“recycled” and “reused” for future development.     

 

Figure 6-3 DRIVE Net Interface (Version 2) 
 

6.3  TransitNet: An E-Science Transportation Platform for 

Transit Performance Measures 

Although DRIVE Net system (version 2) established an interoperable transportation 
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data framework to enhance connections of heterogeneous data sources, it still leaves a 

critical issue on how to integrate with geospatial data in an efficient and effective manner.  

The existing transportation GIS frameworks are not satisfying due to the following two 

reasons: (1) lack an explicit geospatial data model to integrate both transportation 

information and roadway geometric features; (2) slow performance for online transportation 

GIS applications due to redundancy. In this section, a light-weight transportation GIS data 

model is proposed, and it is particularly designed for web-based applications by utilizing 

several open-source software tools. As an improved version of DRIVE Net (version 2), 

TransitNet incorporates this simplified transportation GIS data model into its development, 

and can better represent the large-scale transit network for transit performance measures.  

6.3.1  A Simplified Transportation GIS Data Model 

A transit network is primarily composed of transit routes and transit stops. Transit 

stops are located along each particular transit route, and certain transit stops are served as 

transfer points to connect different transit routes. Traditional GIS applications treat transit 

stops and transit routes as points and lines respectively, and store them as shapefiles (ESRI, 

1998). A shapefile contains the geospatial attributes such as points, polylines, and polygons, 

and additional non-spatial features can be also associated with the shapefile, for example, 

the population of an area and the length of a river. Similar concepts can be applied to 

represent a transit network, where transit stops and transit routes can be archived as 

shapefiles. However, the non-spatial attributes of a transit network cannot be easily 

processed in shapefiles. This is because the non-spatial attributes of either a transit stop or a 
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transit route vary by time. A typical example is the ridership changes for a particular transit 

stop. The number of boarding passengers is not a constant, and thus it is difficult to use a 

static file to store this dynamic information.  

The emergence of geospatial database techniques can alleviate the burden of file-

based geospatial data management and analysis. Similar as the traditional Relational 

DataBase Management System (RDBMS), Geospatial databases can optimize the 

geospatial data management and analysis by using Structured Query Language (SQL) 

techniques and spatial indices. In addition, geospatial databases enable a variety of geo-

processing operations that traditional relational non-spatial databases cannot be complete, 

for example, whether two polylines intersect with each other, or whether points fall within a 

spatial area of interest. However, in reality, most transportation agencies utilize non-spatial 

relational databases to store traffic-related information such as transit GPS data and transit 

smart card transactions data. This creates a critical issue: how to best represent and manage 

the dynamic transportation data in a context of hybrid spatial and non-spatial databases. 

Especially when more and more location-aware transportation data are available for 

advancing Big Data initiative, this issue becomes more pressing.  

Although a wealth of commercialized software packages has provided various 

solutions to tackle this issue, usability and accessibility are far from satisfaction. These 

packages only offer limited functionalities to a certain group of experienced GIS users, and 

cannot satisfy majority of transportation professions for specific and customized purposes. 

Moreover, when integrated with the Internet, long response time can be seen in most of the 
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commercialized software packages for online GIS applications. This is probably because: (1) 

there are too many unnecessary modules during the loading process; (2) the transportation 

GIS model in these packages is not well designed. To address these issues, a simplified and 

flexible transportation GIS data model is proposed for both transportation data management 

and visualization purposes.  

The first challenge is how to represent the fundamental geometry features in 

geospatial databases in an efficient and effective fashion. Each geometric record (e.g. 

polygon, polyline and point) in the geospatial database are recoded in a manner of Well-

known binary (WKB). WKB encoding method is defined by the Open Geospatial 

Consortium (OGC) (ISO and IEC, 2011), and uses the binary content to encode vector 

geometry. Both the coordinate (e.g. latitude and longitude) and projection information are 

include in a hexadecimal string, and can be parsed as a sequence of latitude and longitude 

pairs to visualize on any mapping system. For example, the stop A is a point geometry with 

the latitude and longitude pair as (116.564, 40.009), and it can be represented as a string of 

"0101000020E61000003C3AA9A018245D4016EDDB4C21014440" in the geospatial 

database. In this study, a transit segment is defined as the line between two adjacent transit 

stops, and considered as a fundamental element to conduct the network-level and route-

level performance measures. To accomplish this task, each transit route is segmented by 

several transit stops as a sequence of short links, and each link is bounded with the adjacent 

transit stops. The simplified transit GIS data model can be expressed as in figure 6-4: 
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Figure 6-4 A Simplified Transit GIS Data Model
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As shown in Figure 6-4, the field “Geom” defines the geometry attribute of each 

table, and it is stored as a form of WTK in geospatial databases. Foreign keys are used to 

link different geospatial tables for cross-reference. For example, both transit route table and 

transit stop table share the common fields of route ID and direction. As a derived table 

using the relationship between a transit route and transit stops, transit segment table can act 

a mediator to represent the entire transit network for segment-based travel speed 

visualization. All the above transit spatial data are imported and managed into a geospatial 

database. Meanwhile, the origin and destination information for each smart card transaction 

is updated in a non-spatial database by applying the aforementioned data mining 

approaches. To bridge the spatial data and non-spatial data in a loose-coupled manner, 

common fields are also utilized to merge heterogeneous datasets. This integration method 

behaves like the traditional database “join” query by combining the common fields from 

different types of databases. For example, both the route ID and direction fields from the 

smart card transaction table can associate with the same fields from the transit route table. 

Similarly, the boarding stop ID and the alighting stop ID of each smart card transaction 

should correspond to the startstop ID and the endstopID in the transit segment table 

respectively. To reduce the computational expense for searching and matching the common 

attributes, Hash table data structure can be implemented by creating a hash function for 

indexing between both tables.       

In summary, this simplified transit GIS data model can efficiently manage the 

relationship between spatial data (transit network elements) and transportation data (transit 
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smart card data), and it only requires minimum information to couple with the two types of 

datasets. Therefore, it is particularly suitable to handle a large quantity of transportation 

data such as Beijing transit smart card data without incurring too much redundancy. Both 

the transit network geospatial data and smart card data can be independently processed in 

this context. 

6.3.2  Migrate DRIVE Net to TransitNet: An Improved System 

Design 

The proposed transit GIS data model can be incorporated in the design of TransitNet 

system. In addition, several new features are introduced into TransitNet as well. Figure 6-5 

demonstrates the improved system design of TransitNet:  
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Figure 6-5 System Design of TransitNet 
 

Compared with the system design of DRIVE Net system, the data integration tier is 

an additional functionality. This tier is equivalent to the application of the proposed transit 

GIS data model. Transit network spatial data (route, stop and segment) are digested into the 

geospatial data encoding module for WTK format conversions, and then associate with the 

common fields from the no-spatial smart card database. The matched geospatial smart card 

data are extracted to conduct further transit performance metric calculation at different 
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scales. The calculated statistics is finally sent to the client-side web browsers to display, 

such as ridership temporal histogram at a particular stop, color map of network-wide transit 

speed, etc. The client-side engine is responsible to parse the geometry feature of each 

statistical result (e.g. a congested transit segment) as a sequence of latitude and longitude 

pairs, and presented in an OpenStreetMap interface for visualization purposes. The entire 

system is implemented using several open-source software packages: PostgreSQL (The 

PostgreSQL Global Development Group, 2013) and PostGIS (Refractions Research, 2013) 

are adopted to store the transit spatial information. Vaddin (Vaadin Ltd., 2013) is used to 

construct the interactive graphical user interface in Java.  

6.3.3  Key Components in TransitNet  

As mentioned in section 6.1, a hierarchical transit performance measurement 

framework is proposed called TransitNet. TransitNet can be accessed at 

www.uwdrive.net/TransitNet. In this section, the four key components of TransitNet are 

presented as below: 

Transit Network-level Speed Map 

The transit travel speed can be calculated using the identified passenger OD pairs. 

Figure 6-6 demonstrates the Beijing transit network traffic condition from 4:30PM to 

5:00PM on July, 30, 2010 (weekday). 

 

http://www.uwdrive.net/TransitNet
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Figure 6-6 Beijing Transit Network Speed Map 

Additional analysis functionality is provided to view the network-wide transit travel 

speed statistics. By clicking transit speed statistics button, a window (as showed in Figure 

6-7) is popped up to illustrate the detailed transit speed information for the entire network, 

such as average speed, deviation, 90th percentile speed, percentages of 

uncongested/congested transit segments, and the composition of data sources for the transit 

speed calculation (GPS and smart card). The colored speed map and statistical analysis can 

be used as effective tools for transit agencies to identify congested areas, and then improve 

their public transit services accordingly such as opening express lanes for public transit or 

shortening headways, etc. 
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Figure 6-7 Network-wide Transit Speed Statistics Windows 
 

As presented in Figure 6-6 and Figure 6-7, the network-wide transit average speed is 

22.97 km/h, and its standard deviation is around 6.17 km/h. More than 80% transit links are 

highly congested or moderately congested, where the transit speed is under 25 km/h. severe 

congestions can be found in the central district of Beijing through the transit speed spatial 

distribution. 66% of speed calculations are from smart card transactions, and 33% of 

calculations are from GPS devices. This is a reasonable result for the afternoon peak hour 

traffic in Beijing. Most roadways suffer from congestions and thereby low speed can be 

observed as those red lines in the map.     

Transit Stop-level Ridership Analysis   

Transit ridership analysis is of critical significance for transit agencies. Transit 

agencies strive to retain the existing transit riders, and also attract more potential transit 
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riders. Presenting the spatiotemporal transit ridership through a map-based system will be 

beneficial for transit agencies to conduct the before-and-after analysis and understand 

passenger demand changes. An example is shown in figure 6-8. 

Route 51300 is a flat-fare based loop route with a total of 34 transit stops. Both the 

passenger boarding and alighting stops can be inferred by the aforementioned smart card 

OD estimation approaches. To visualize these results, three stop-level analytical tools are 

provided: the number of boarding passengers, the number of alighting passengers and the 

passenger load profile.  

 

Figure 6-8 Number of Boarding Passengers Distribution 
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Figure 6-9 Number of Alighting Passengers Distribution 
 

 

Figure 6-10 Passenger Load Distribution 
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Number of boarding passengers and number of alighting passengers are colored in 

blue and red respectively shown in Figure 6-8 to Figure 6-10. The radius of each stop 

represents the magnitude of passenger counts. The larger the radius is, the more passengers 

board or alight at each stop. Similarly, the passenger load at each stop is defined as the 

difference between the boarding passenger counts and the alighting passenger counts. If the 

total passenger boarding activities are more than the total passenger alighting activities at a 

certain stop, the level of congestion inside a transit vehicle at this stop will increase. 

Consequently, the comfort level of passengers may degrade, and could affect transit riders’ 

mode choices in the future. The passenger load spatial distribution offers an intuitive 

method for transit agencies to understand stop-level passenger demands. In addition, 

TransitNet can also generate a fine-grained histogram chart for the temporal distribution of 

ridership at each stop.  As shown in Figure 6-11, Stop ID 21 of route 51300 is selected as a 

transit stop with high passenger demands. To further investigate how the ridership varies by 

time. An interactive temporal histogram can be generated by clicking the button of 

“ridership analysis”. Compared with the passengers who got off the buses, more passengers 

got on the buses from the morning peak hour (7:00 AM to 9:00 AM) and afternoon peak 

hour (5:00 PM to 7:00 PM). This may lead to a congested environment inside the buses, 

and further prevents passengers at upstream stops from boarding. Transit agencies can 

resort to this temporal tool to improve transit service availability by adding more buses 

during rush hours.  
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Figure 6-11 Stop-level Ridership Analysis for Route 51300 
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Transit Stop-level Headway Distribution 

Headway is another critical performance measure to quantify the transit service 

quality from transit riders’ perspectives, and it can be considered as the maximum waiting 

time for each transit rider. Due to the traffic signal delay and dwell time at each transit stop, 

the headway for each stop may vary, and thus it is necessary and useful for transit agencies 

to visualize the statistics of stop-level headway for decision making. Figure 6-12 presents 

an example of route 118 on April, 7, 2008.  A total 116 of bus runs can be estimated using 

the smart card transaction data, and the average headway and headway deviation for stop 23 

can be further derived as 9.47 minutes and 6.63 minutes respectively. The mean headway is 

used to color each transit stop. In this case, transit agencies can easily identify those transit 

stops with the relatively long headways, and make corresponding schedule adjustments. A 

frequency histogram is also generated to depict the distribution of headway (Figure 6-13). 

For stop 23 in the route 118, most time intervals between two consecutive buses are small 

(around 8 minutes). Although there are several outliers (e.g. 31 minutes and 32 minutes), 

most of these long headways occurred during rush hours, and thus traffic congestion is the 

contributing factor to impact headways.   
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Figure 6-12 Transit Stop-level Headway Spatial Distribution 

 

Figure 6-13 Transit Headway Histogram 
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Transit Route-level Travel Time Reliability 

Another feature of TransitNet is to visualize the transit travel time reliability on a 

colored map (Figure 6-14). Buffer time index is used to measure the travel time reliability. 

The smaller the buffer time index is, the more reliable a transit route is.  

 

Figure 6-14 Route-level Transit Travel Time Reliability Spatial Distribution 

To visually analyze the transit travel time change, the travel time of each transit 

route/link can be also represented as Figure 6-15. For route 118 on April 7, 2010, the buffer 

time index for the entire route is 0.32, which implies that transit rider should allow 22.71 

minutes to ensure on-time arrival 95 percent of the time.  
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Figure 6-15 Transit Route Travel Time Trend Analysis 
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Chapter 7 Conclusions and Future Research 

7.1 Conclusions  

Public transit is considered as an effective countermeasure to alleviate congestion 

and to reduce emissions and energy consumption. Therefore, improving public transit 

quality of service and ultimately attracting more ridership is of critical significance for 

transit agencies, and it requires methodological methods to better quantify transit service 

for operation planning and system optimization. However, historically, monitoring transit 

system performance has not been a straightforward task due to a scarcity of data. Recent 

passive transit data collection techniques (e.g. automatic fare collection system and 

automatic vehicle location system) have shifted public transit system to a data-rich platform, 

and enabled more opportunities and challenges to conduct data-driven research.  

This study utilized Beijing smart card data to demonstrate the feasibility of 

establishing a web-based E-Science system for transit performance measures. Different 

from most entry-only AFC systems in other countries, Beijing’s AFC system does not 

record boarding location information when passengers get on the buses and swipe their 

smart cards. Also, there are only a limited number of buses equipped with GPS devices. 

This creates challenges for passenger OD estimation.  

The first task is to infer passenger origin information using smart card and GPS data. 

For those buses with GPS devices, stop-level arrival time can be efficiently estimated by 
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integrating GPS records and stop location data. Each smart card transaction record is then 

associated with the inferred bus arrival time to identify the missing boarding stop. For those 

buses without GPS devices, a Bayesian decision tree algorithm is proposed to infer 

passenger origin stop, This algorithm is based on Bayesian conditional probability theory, 

and the probability density function of the segment-based travel speed is used to measure 

the randomness of passenger boarding stops, where its mean and variance are not sensitive 

to the algorithm accuracy and thereby not dependent on other data sources. Moreover, we 

can use the time invariance the of Markov chain model to further reduce the computational 

complexity of the algorithm to linear from exponential. The optimized algorithm has proven 

its accuracy and efficiency using the SC transaction data from two routes. 

Then, to better understand each transit rider’s spatial and temporal travel patterns 

and regularity, a series of data mining procedures through multiday smart card transactions 

was developed. With a better understanding of the travel patterns and regularity (the 

“magnitude” level of travel pattern) of transit riders, transit authorities can evaluate the 

current transit services to adjust marketing strategies, keep loyal customers and improve 

transit performance. However, it is fairly challenging to identify travel patterns for each 

individual transit riders in a large dataset. Therefore, this study proposes an efficient and 

effective data-mining procedure that models the travel patterns of transit riders. Transit 

riders’ trip chains are identified based on the temporal and spatial characteristics of smart 

card transaction data. Based on the identified trip chains, the Density-based Spatial 

Clustering of Applications with Noise (DBSCAN) algorithm is used to detect each transit 

rider’s historical travel patterns. The K-Means++ clustering algorithm and the rough-set 
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theory are jointly applied to clustering and classifying the travel pattern regularities. The 

rough-set-based algorithm is compared with other prevailing classification algorithms. The 

results demonstrate both the efficiency and accuracy of the proposed algorithm, and 

illustrate the feasibility of applying to very large datasets. 

On the basis of the mined travel patterns, individual level passenger destination stop 

can be further estimated considering both the temporal and spatial relationship: 

Spatiotemporal transfer activities between different transit routes are firstly utilized to infer 

the possible alighting stops for passengers, and then, each individual’s daily trip chain 

information (e.g. commuting behavior) is also taken into account to infer the missing 

alighting stops. Furthermore, because the historical travel patterns for each passenger are 

successfully extracted through weekly smart card transaction data, behavioral information 

can be also incorporated into passenger destination estimation to gain more insights. The 

proposed approach is tested using the distance-based fare smart card data from two routes, 

and more than 70% of the alighting stops can be accurately estimated within one-stop-error 

range.  

To convey transit-related information in a timely and understandable manner, a web-

based E-Science platform for visualizing, modeling, and analyzing transportation data was 

developed in this study. This platform ties transportation data with geospatial data using an 

efficient and effective GIS engine, and demonstrates several transit performance indicators 

at different scales (i.e. network-level, route-level and stop-level) . The proposed platform 

provides an online prototype for e-science applications in transportation. It allows transit 



www.manaraa.com

139 

 

data to be easily accessed, broadly visualized and evaluated. TransitNet offers not only a 

web-based advanced traveler information system with archived data user service support 

for data sharing and visualization, but also an interoperable data-rich, regional map–based 

platform for transportation decision makers and researchers to validate models and existing 

theories. 

 

7.2 Recommendations for Future Work 

Although this study sheds lights on the development of transit performance 

measures using massive smart card data, more endeavors should be made to enhance both 

the depth and width of the proposed work. The potential improvements are listed below: 

• Bus Dwell Time Analysis 

In this study, a fixed time threshold (one hour) is assumed to link different transit 

trips due to data limitation. Randomness should be taken into account to estimate the bus 

dwell time (Dueker et al., 2004; Tirachini, 2013), and this will benefit for improving the 

transit OD estimation accuracy.  

• Cloud Computing Technology Integration 

Although the transit OD estimation algorithm has been optimized to reduce the 

computational complexity, its performance is still not satisfying for multiday smart card 
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data. The recently emerging concept and practice in “cloud computing” brings several 

advantages in terms of data sharing and data processing: scalability, instant cloud hosting, 

and money saving. Together, with the increasing computing power of IT technology, cloud 

computing presents a promising solution to large-scale smart card data processing. 

• Dynamic Transit Routing   

Most transit trip planning systems are either based on the shortest distance or the 

least number of transfers (Peng and Kim, 2008; Sun et al., 2011). However, an optimal 

transit itinerary in terms of the distance or number of transfers may not guarantee the least 

travel time. By integrating transit OD information with E-science based transportation 

platform, dynamic transit routing function with the shortest travel time can be provided to 

transit riders.   

• Transferability Study    

In order to generate broader impacts on other similar AFC systems in other regions, 

more studies are required to test the effectiveness of the proposed algorithms. Especially for 

those AFC systems without distance-based fare buses, the applicability of passenger 

destination estimation algorithm should be further investigated.  
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